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Neutron Investigation of the Ion Dynamics in Liquid Mercury:
Evidence for Collective Excitations
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The ion dynamics of liquid mercury was investigated by inelastic neutron scattering. By exploiting
an optimized high-resolution (~1 meV) experimental configuration, the dynamic response function was
accurately measured. Collective excitations extending up to 0.6 A~! were observed with an associated
velocity of 2100 = 80 m/s. This value is notably greater than the sound velocity, but it is provided by
a simple Bohm-Staver calculation. The latter finding emphasizes those electron-related features in the
ion dynamics, which are common to systems as different as polyvalent and alkali metals.

DOI: 10.1103/PhysRevLett.87.215504

Investigation of the dynamic behavior of liquid metals
at the atomic scale is of considerable interest because of
those peculiar features in the excitation spectra that can no
longer be interpreted by extending the description of the
liquid from classical hydrodynamics [1]. The microscopic
region is, indeed, characterized by the occurrence of
collective excitations, i.e., propagating ion density fluctua-
tions, which exhibit a dispersion relation extending over a
relatively wide range of momentum transfers [2—8] (typi-
cally, up to half the position of the first maximum of the
static structure factor). Understanding the microscopic
mechanisms responsible for the propagation and the
decay of these correlated ionic motions is still a challenge
in liquid metals, where the dynamic behavior cannot
be disentangled by the interacting electron gas effects
[1,6,8,]. A recent x-ray inelastic scattering experiment
[8] on the low-electron-density liquid metal Li(NH3)4 has
shown that long-living ion density fluctuations exist with
a dispersion curve which is dramatically affected by the
electron-electron interactions. The analysis of collective
excitations, extending beyond the hydrodynamic limit,
represents an essential contribution to the development of
meaningful and reliable theoretical models of the liquid
state [9,10].

In a recent paper, we have investigated the ion dy-
namics of a properly tailored K-Cs liquid alloy [6] and
shown that the dispersion curves measured in K-Cs, Rb
[3], and Cs [4] at the melting point satisfy to a scal-
ing relation which substantially reflects the scaling of the
electron gas densities, according to the simple Bohm-
Staver (BS) model for the coupled electron-ion plasma
[11]. Therefore, at least in liquid alkali metals, the electron
gas density appears to be a key parameter which enables
a unified description of the collective ion dynamics. This
experiment-founded result is also featured by molecular
dynamics simulations based on the Price-Singwi-Tosi po-
tential [10]. Despite the success of this interpretation, ap-

215504-1 0031-9007/01/87(21)/215504(4)$15.00

PACS numbers: 61.12.—q, 61.25.Mv, 71.10.Ca

plication of BS-like models has been confined to alkali
systems, that is to low-electron-density systems. Con-
sidering that the BS approach amounts to neglecting the
repulsive core potential, by a treatment of the ions as
dimensionless pointlike particles, and to a rather simpli-
fied description of the electron-screened ion-ion Coulomb
interaction, we believe that the investigation of a high-
electron-density liquid metal would be fundamental to un-
derstanding the role of the electron-density-related effects
against the ion size in governing the propagation of the ion
density fluctuations. To this aim, the ideal sample should
have a high electron density coupled to a free-electron-like
band structure. The two joined requirements lead to poly-
valent systems with an sp-like conduction band. The ex-
perimental data in simple (s-like) and polyvalent (sp-like)
liquid metals suggest that the occurrence of long-living
collective excitations is favored in these systems and it is
possibly related to the details of the long-range part of the
interatomic potential. A neutron scattering investigation
on liquid lead is available [12] and collective excitations
were, indeed, observed up to wave-vector transfers as high
as 1.2 A~!'. However, the limited number of existing mea-
surements makes the explanation of these properties still
an open question.

Among polyvalent monatomic metals, liquid mercury
has two specific characteristics that make it an appeal-
ing candidate for an inelastic neutron scattering investi-
gation, namely the high electron density, r, = 2.70 (the
dimensionless parameter r; being defined as 2= ;—‘Wrg’ag,
p the electron number density, and ao the Bohr radius),
and the rather low value of the sound velocity [13] (v =
1451 m/s), which makes the kinematic constraints on the
neutron measurement less tight. Notwithstanding these
characteristics, no neutron or x-ray measurement of the dy-
namic response function in liquid mercury has been car-
ried out so far. Indeed, the main experimental difficulty
is brought about by the high neutron (and x ray, as well)
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absorption cross section of mercury. However, recent neu-
tron measurements of the dynamic response have been
carried out successfully in liquid samples of Cs [4] and
KsyCsyg [6], that is in systems characterized by low scat-
tering power and high absorption cross sections. There-
fore, the experimental investigation of liquid mercury can
be performed at a comparable accuracy level, although the
presence of a rather high incoherent contribution, which
partly masks the collective coherent response, makes this
experiment even more challenging. The study of mercury
dynamics will enable us to describe the effects of the elec-
tron screening in the limit of high electron density and to
clarify the relative role of the core repulsive potential and
the electron-screened ion-ion interaction.

Room temperature measurements were carried out at
the three-axis spectrometer IN1 installed at the High Flux
Reactor of the Institut Laue Langevin (Grenoble, France)
and operated without the hot source. The experimental
configuration was optimized for good resolution/intensity
performances. A constant analyzer energy setup, which
allows for an easy normalization of the data on absolute
scale, was preferred. Very tight collimations of 25',
20', 20', and 30" were employed from the reactor to the
detector. A wide vertically focusing Cu(200) monochro-
mator and a wide vertically focusing PG(004) analyzer
were used. The fixed final wave vector was 4.5 AL,
corresponding to ~42 meV analyzer energy. This value
was selected as an adequate compromise between the need
of reducing the absorption cross section of mercury while
maintaining a good energy resolution. Exploiting the low
background ensured by the 1 m diameter evacuated flight
path around the sample, high quality data were collected
down to 1° scattering angle with this instrument configura-
tion. Despite the tight collimations, a rather high incoming
intensity was available. The sample cell was a flat, vacuum
tight, 7 X 4 X 0.065 cm? aluminum cell, with wall thick-
ness of ~0.5 mm. The sample was 99.999% pure mercury
with natural isotopic composition. The scattered intensity
from the sample was measured at seven wave-vector
transfers Q, namely at Q = 0.25, 0.3, 0.4, 0.6, 0.8, 1.0,
and 1.2 A~!. Accurate measurements of the background
(the empty cell, the absorber, and the environment) were
necessary since, although rather small, it represents a non-
negligible contribution on the tails of the scattering
function and in those positions with the analyzer close
to the incoming beam. The resolution of the instrument
was obtained by measuring the intensity diffused at
Q =03 A" by a 1.5 mm tick vanadium slab placed
inside the sample cell. The sample transmission was
measured by inserting a plastic attenuator on the incom-
ing beam and it turned out to be T = 0.454 £ 0.001.
The measured data were normalized to the same monitor
counts and the proper background subtraction was applied.

The background-free intensity contains the contribution
of multiple scattering (MS) processes taking place inside
the Hg sample and between the sample and the cell. The
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latter processes were neglected because of the low scat-
tering cross section of aluminum. In mercury MS is ex-
pected to be small; however, since a much higher accuracy
is necessary to treat the data of this absorbing system, we
applied an iterative procedure for the MS correction [14].
The procedure consists of an initial guess for the trial single
scattering cross section, the calculation of the MS contri-
bution, the subtraction of it from the experimental data,
and the use of the MS-free experimental data as input of
the next MS calculation cycle. The procedure was repeated
until convergence. By observing that at the incoming neu-
tron energies of the experiment the MS was dominated
by processes at high wave vector, the trial cross section
could be suitably described within the incoherent approxi-
mation [15]. The simplest representation was that pro-
vided by a continuous diffusion model, i.e., a Lorentzian
function with full width at half maximum (FWHM) equal
to 2DQ?%, D = 1.57 X 107 cm?s~! is the self-diffusion
constant. Although a convenient trial function, the simple
diffusion Lorentzian did not produce convergence since
it was not sufficient to describe the overall structure of
the cross section. We found that the features of the cross
section could be reproduced only by the sum of at least
two Lorentzian functions, describing the quasielastic single
scattering cross section, and a smaller contribution repre-
senting the propagating collective modes. The instrument
resolution function, as measured by the vanadium standard,
was described by a Gaussian function with a FWHM equal
to ~1.16 meV, in excellent agreement with the resolution
curve calculated according to [16].

The MS-corrected experimental dynamic structure fac-
tors are shown in Fig. 1 versus energy transfer and at
some selected wave-vector transfers. The main features
of the dynamic structure factor are a sharp resolution-
limited quasielastic peak superimposed to a quasielastic
signal much broader than the resolution and inelastic side
peaks. The inelastic structures are apparent in the low-Q
spectra, while the structure of the quasielastic signal is well
visible in the high-Q spectrum shown in Fig. 1 together
with the elastic resolution. An accurate and quantitative
analysis is required to describe the different features of the
self- and collective ion dynamics as they show up in the
present experimental data. As a first approach, we pre-
ferred to resort to an empirical fitting of the data that has
the advantage of being a rather simple procedure while
retaining the essential features of the complex real dynam-
ics in a phenomenological way. We modeled the dynamic
structure factor S(Q, w) by using the minimum possible
number of Lorentzian functions, namely two, to describe
the quasielastic contribution Sq.(Q, @) and a damped har-
monic oscillator (DHO) to describe the purely inelastic
component Sinei(Q, w). The decomposition of S4.(Q, w)
into the sum of two Lorentzian functions was the simplest
working solution which enabled fitting the data with a re-
duced number of free parameters. S(Q, ) was given by
the sum of Sqe(Q, ) and Sine1(Q, w), with
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FIG. 1. Dynamic structure factor S(Q, fiw) of liquid mercury
versus energy transfer and at selected values of wave-vector
transfers. The experimental data (dots) are also shown on a scale
expanded by a factor of 10 (circles) to emphasize the inelastic
structures. The full lines are the curves calculated according to
the fitting model described in the text. Moreover, at O = 0.3,
0.4, and 0.6 A~! the inelastic contribution (DHO) is shown,
whereas at 9 = 1.0 A~! the two quasielastic (Lorentzian) con-
tributions are separately shown. The measured resolution func-
tion is presented on the expanded scale in the inset.
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Sinel(Q’w) = [n(a)) + l]aC(Q)

I'e(Q, w) ,

[w? = 02(Q)F + I2(Q, @)
n(w) is the Bose factor, I'o(Q) was assumed equal to DQ?,
and I'1(Q), I'(Q, ), @:(Q), ao(Q), ai(Q), and a.(Q)
were left as free parameters. The number of fitting parame-
ters was further reduced by assuming the damping function
I'.(Q, w), which is always an odd function of w, given by
I':(Q, w) = aQw. This expression is consistent with the
random phase approximation to the dynamic structure fac-
tor of a liquid metal treated as the two-component mixture
of interacting electrons and ions [1]. The convolution of
S(Q, w) with the four-dimensional (Q, w)-dependent reso-
lution function was fitted to the experimental data. The
results of the fit turned out to be satisfactory at all the
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measured wave vectors and independent of the inelastic
contribution for Q greater than 0.6 A™'. As to the free
parameters of the fit, we found that I';(Q) has a small Q
dependence, whereas w.(Q) shows an almost linear trend
up to Q = 0.6 A™'. Therefore, the fit of all the mea-
sured spectra was repeated assuming I’y to be a constant
and w.(Q) = coQ, co being the collective mode velocity.
In this way, the fit was carried out by using the three Q-
independent parameters I'y, co, and & and the three ampli-
tudes ao(Q), a1(Q), and a.(Q).

The best fit curves are shown in Fig. 1 in compari-
son with the experimental data. The following best fit
values of the Q-independent parameters were obtained:
ATy =20 = 02meV, Ficy=13.8 = 0.5meV/ AL,
and fia =9 + 2 AmeV. The energy integrals of the
narrow, Ag(Q), and the broad, A,(Q), quasielastic compo-
nents and of the inelastic component, A.(Q), are shown in
Fig. 2. In the present Q range, A.(Q) is almost constant
and close to the static structure factor of liquid mercury.
This is an indication that the quasielastic structure of the
spectrum is almost entirely due to the self-dynamics. The
integrals Ag(Q) and A;(Q) are, respectively, a slightly
decreasing and an increasing function of Q, although the
present Q range was not wide enough to detect a possible
saturation of A;(Q). This finding could be interpreted as
an evolution of the self-dynamics from the hydrodynamic
regime, characterized by I['o(Q), to a local regime, as
represented by the broad I'y Lorentzian. This suggests
that, in this intermediate Q range, the single-particle
behavior of the system is intermediate between the two
regimes. Modeling the sharp quasielastic peak by means
of the I'y(Q) Lorentzian was a noninfluential choice, since
the effective width and shape of this peak were masked
completely by the resolution. The I'; Lorentzian, on the
contrary, was broader than the resolution, the width T’
was essentially Q independent, and 1/T"; was ~0.3 ps.
These characteristics cannot be attributed to a free dif-
fusion in real space and suggest the presence of a fast
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FIG. 2.  Ay(Q) (dots), A;(Q) (circles), and A.(Q) (triangles)
versus Q (see text).
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time-scale contribution in the self-dynamics of mercury.
Indeed, 1/T"; could be interpreted as the equivalent of a
“residence” time associated with a localized motion of a
single atom.

As to the collective dynamic behavior, the present study
has the merit of showing that well-defined inelastic propa-
gating modes exist in mercury up to wave-vector transfer
values Q ~ 0.6 A~!, with an associated velocity equal
to 2100 * 80 m/s, as obtained from the linear low-Q
region of the dispersion curve fiw.(Q). This value largely
exceeds the sound velocity (1451 m/s) measured in liquid
Hg at 293 K by ultrasound spectroscopy [13]. We inter-
preted the observed frequency of the collective excitations
by means of the BS model [11] which had been success-
fully employed in the case of liquid alkali metals [6]. This
model, which portrays the liquid metal as a gas of pointlike
ions interacting through the Coulomb potential screened
by the electron gas, results in the well-known long-
wavelength approximation for the frequency of the longi-

tudinal collective excitations; that is
2

P
€(Q)’
where Q2 = 4mne?/M is the plasma frequency of the
ion gas, n and M being the number density and the mass
of the ion. €(Q) is the (static) dielectric function of
the homogeneous electron gas at the appropriate density
p = Z'3n, Z being the ionic charge. The BS model was

applied to liquid mercury using Z = 2 and e(Q) obtained
from the Lindhart formula [11]. The resulting velocity

was limQﬁo\/ % = 2090 m/s, that is higher than the
sound velocity and coincident with the experimental value
associated to the collective excitations. This result shows
that the BS model still accounts for the long-wavelength
collective behavior in a system such as mercury. As a fur-
ther check, we applied the same model to the published
data on liquid lead [12]. By using Z = 1.8, as calcu-
lated in Ref. [17] for solid fcc Pb, we found a velocity
of 1760 m/s, that is a value again coincident with that ob-
served in the neutron scattering measurement [12].
Equation (1) provides a good approximation for the ve-
locity of the density fluctuation excitations in systems
as different as alkali and polyvalent metals and, as re-
cently reported, lithium ammonia at the solubility limit
[8], where r; varies from 5.37 in Rb to 2.70 in Hg to 7.4
in Li(NH3)4. This suggests that the main interaction gov-
erning the propagation of collective modes is the Coulomb
potential screened by the electron gas. Indeed, the point-
like approximation for the ion core contained into the BS
model confines the repulsion core potential to a negligible
role. The most intriguing result of the present investigation
is the very high ratio between the collective excitation ve-
locity and the sound velocity in liquid mercury, that is the
remarkable anomalous dispersion of the longitudinal den-
sity fluctuation modes. Actually, anomalous dispersion has

w(Q) = (1)
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been often observed in metals, but an impressively large
effect as the present one has been reported only in water
[18], that is in a profoundly different system. As a con-
clusion, we want to stress once more that although the dis-
cussed systems, namely alkali metals, mercury and lead,
have very different ionic core characteristics, the velocity
of the collective modes was found to be well reproduced
by the BS model, that is a model which emphasizes the
role of the electron density. Therefore, one can conjecture
that the repulsive ionic core has a main role in determining
the sound velocity, whereas the presence of the anomalous
dispersion is brought about by the interplay between elec-
tronic screening and shape of the ionic core.
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