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Gyrokinetic theory is used to investigate the effect of the polarization drift on magnetic island evolu-
tion. Three regimes are found. For island phase velocities between the ion- and electric-drift velocities,
the polarization current is shown to be stabilizing. For phase velocities between the electric- and elec-
tron-drift velocities, the island emits drift waves. This results in a radiative drag force. For all other
phase velocities the polarization current is destabilizing, in agreement with the fluid limit.
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The polarization current has an important influence on
the stability of thin magnetic islands [1-9]. In particular, it
has been invoked as a drive for magnetic turbulence [1-5],
as an agent in the process of mode locking in tokamaks
[6,7], and as the source of the observed stability threshold
against the growth of neoclassical tearing modes [8,9].
Questions have been raised, however, concerning the role
of a narrow layer surrounding the island separatrix where
the polarization current is large [7]. It has been shown
recently, using fluid models, that accounting for this layer
reverses the effect of the polarization current on stability
[10-12].

The occurrence of a current layer on the separatrix is a
consequence of the assumption, motivated by experimental
observation, that magnetic islands propagate at different
velocities than the surrounding plasma. For islands wide
enough to flatten the density profile, such a difference in
velocity requires the presence at the magnetic separatrix
of a pedestal in the electric field. The polarization drift of
the ions in the pedestal gives rise to a density perturbation
that is neutralized by an electron current flowing along the
field lines. We will follow the practice of referring to this
neutralizing electron current as the polarization current.

In this paper, we present the first kinetic analysis of
nonlinear magnetic island evolution that includes the ef-
fect of the excitation of drift waves and extends over the
complete range of frequencies comparable to the drift fre-
quency. Our analysis brings to light three new phenomena
that have important implications for our understanding of
island dynamics. We find that, first, the emission of drift
waves leads to a radiative torque on the island. Second,
the island interacts resonantly with the drift wave it ex-
cites when its width is a multiple of the radial wavelength
of this drift wave. Third, there exist two bands of fre-
quency where the polarization drift is stabilizing: the first
extending from the ion diamagnetic frequency almost to
the electric-drift frequency, and the second extending from
the electron-drift frequency towards the electric-drift fre-
quency by an amount that varies inversely with the ratio of
the island width to the ion gyroradius.

We consider a periodic sheared slab geometry which
serves as a model for many physical plasma systems.
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PACS numbers: 52.30.Ex, 52.35.Py, 52.35.Qz, 52.55.Tn

The magnetic field takes the form B = Byz — V¢ X 2,
where By is a constant magnetic field pointing in the
symmetry direction Z = Vz. In the reference state B =
Bo(Z — (w/L,)x¥), where x is the distance from the reso-
nant magnetic surface normalized to the island width w and
L, is the magnetic shear length. We consider a perturbed
azimuthal flux of the form ¢ = ¥y + ) cosé&, where & =
kyy — [" (') dt’ is the azimuthal angle in the frame such
that the island is at rest. In this frame, the electric field far
from the island approaches a spatially constant value such
that kyvg = —w, where vg is the electric-drift velocity,
and w is the rotation frequency of the island in the (x, y, z)
frame where the unperturbed electric field vanishes. The
perturbed flux describes a magnetic island of half-width
w = \/4LSQZI /By- We use the normalized flux-surface la-
bel Q defined by QO = —¢/¢ = 2x> — cosé, so that
) = —1listheisland “O” point, {) = 1 is the island sepa-
ratrix, and () > 1 is the region outside the island.

Following Rutherford [13], we obtain an equation de-
scribing the evolution of the island’s width by integrating
Ampere’s law radially across the island region, making use
of the constant- ¢ approximation (¢ >> d,¢). We write
the condition that the cos¢ and siné components of the cur-
rent match the jump in the perturbed magnetic field across
the island region as

) /
fdff_ dx Jje ¢ = %tﬁ, (1)

where A’ = [(9¢/9x)c—0+ — (0/0x)y—0- ]/ and 0F
indicates the asymptotic limits as x approaches the reso-
nant surface from either side. Here R(A’) describes the
part of the external perturbation that is in phase quadrature
with the perturbed field B,: It is proportional to the free
energy available in the equilibrium current distribution.
J(A’), by contrast, describes the part of the external
perturbation that is in phase with B,. This is proportional
to the external electromagnetic torque that may arise, for
example, in the presence of a resistive boundary or of a
synchronous external perturbation.

From the asymptotic matching equation (1), Ohm’s law,
and the vorticity equation, it can be shown [14] that the
island’s evolution in the fluid limit is governed by
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where D,, = nc? /4 is the resistive diffusion coefficient,
A = 3242 is a numerical coefficient, k; = k - B/By is
the wave vector, k|/| = dk)/dx = ky/Ls, va is the Alfvén
velocity, and

16L; * .
Apol = - ) fdff dx-]pole i€ 3)

cBow

measures the effect of the polarization current Jp, on the
island growth. Our aim is to calculate Jj,), and to use
Eq. (3) to evaluate its effects on the island evolution.

For v < kv, where v,, = \/Te/me and T, are, re-
spectively, the electron thermal velocity and temperature,
we may use a fluid model to describe the electron response.
In the vicinity of the island, e¢ /T, << 1, so that the den-
sity is adequately represented by an expansion of the Boltz-
mann response,

ne(€2, &) = noll + edp(Q,£)/T(Q) + H)]. (4

The quantity H({)) is a stream function for the transverse
component of the electron fluid velocity. We adopt the
following model, similar to the one introduced in Ref. [3]:

@ >K<@>@(Q -1,  ®)
L,\ 2
where o, = sgn(x) and O is the Heaviside step function.
This model, representing a quantity with a transverse gradi-
ent that has been flattened inside the separatrix, was shown
in previous literature [12] to be a good approximation for
the exact solution of the transport equation in the fluid
limit. The gradient of H, proportional to the electron trans-
verse velocity, is shown in Fig. 1.

The electric current is obtained from the continuity
equation, V|J) = evg - Vn,, where parallel ion velocity

H(Q) = a'x<1 —
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FIG. 1. Comparison of the electric-drift velocity profile across

the island’s O point for p; = 0.2w and 7 = 1 (dotted line) with
that found with cold-ion fluid theory for p; = 0.2w (dashed
line). The solid line represents the derivative of the electron
stream function H in Eq. (5), normalized to 1 — @/ws,. This
is equivalent to the electric-drift velocity in the limit p;/w — 0
corresponding to magnetohydrodynamics.
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is neglected on the grounds that kjc; < w. Here, ¢; =
JT./m; is the sound speed. Substituting the electron
density found in Eq. (4) into the continuity equation and
integrating, we find

noec dH

Jy=1(Q) + 7 d—QUX(d) —{P)e) - (6)

Here the angle brackets represent the flux-surface average.
The first term of Eq. (6) is the inductive part of the current,
while the second term represents the polarization current.

We consider next the gyrokinetic equation for the ions.
Using the total particle energy as an independent variable,
the gyrokinetic equation takes the form

vVifi +(ve)a - Vfi = 0, ™
where (vg), is the average of the electric-drift velocity
over the gyration phase. For kjv,; < w, where v; =

JTi/m; and T; are, respectively, the ion thermal velocity
and temperature, the solution is

[ilX,BEom, Ei) = g(()as . Ei) ®
where X and E are the radial and azimuthal coordinates
of the guiding center, and g is an arbitrary function. The
solution given by Eq. (8) expresses the fact that the dis-
tribution function depends on position only through the
gyroaveraged electrostatic potential.

In principle, the form of the function g is determined at
higher order by transport processes. Here, for simplicity,
we will use a linearized model for g, expanding with
respect to the equilibrium Maxwellian distribution fy;.

There follows f; =[1 — e¢p(x,&)/T;Inofmi(v) + 61,

where
T
elbla <1 - _>nOfMi(v) )
i w
is the nonadiabatic part of the ion response. Here w.; =
[1 + W/v} — 3/2)ni]ws«, m;i = dlogT;/dlogn, and
ws+ = kycT;/eBL,. The above solution was obtained
previously by Connor and Wilson [5]. Note that the
adiabatic part of the ion response depends on the local
(unaveraged) electrostatic potential at the position of the
particle. The ion distribution function and ion density will
thus have a discontinuous gradient if the electric field is
discontinuous.

To obtain the ion density, it is necessary to express the
ion distribution function in the particle coordinates before
integrating over the velocity. This is most easily done by
using Fourier transformations in the transverse direction.
Evaluating the spatial and velocity integrals, and using the
quasineutrality relation, we obtain the governing equation
for ¢ (ky, &), the Fourier transform of ¢:

G(k2p}/2)ed ke, €)/T, = —wH(k, ),  (10)

where p; = v,/ w.i, w.; = eB/mc, and G(b) = w(l +
7) = {(@7 + @.)lo(b) — Mwsb[Io(b) — I;(b)]}e".
Here Iy and I are the modAiﬁed Bessel functions of the
first kind, 7 = T, /T;, and H is the Fourier transform of

(l)*l'

Sfi(X,B,v) =
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H. The response function G is clearly proportional to the
dielectric permittivity. An important feature of Eq. (10)
is that the dispersion relation G(k2p7/2) = 0 has one or
more pairs of real roots for k, whenever 0 < w/w., < 1
(corresponding to islands with a phase velocity inter-
mediate between the electric-drift velocity and the drift
velocity of the electrons). When G has real roots, ¢
has a pole on the real axis, indicating the excitation of a
drift wave by the island. It is then necessary to apply an
outgoing-wave boundary condition to determine the form
of ¢(x,&) [15]. We have verified the appropriateness of
the outgoing-wave boundary condition by matching the
solution at large x to the WKB solutions of the linear
electrostatic eigenmode equations including the effect
of parallel ion streaming and ion-Landau damping. The
WKB analysis shows that the outgoing wave decays, as
expected, for w/w.. > 0. For 1 < n; < 3, however,
we find that there appears a narrow range of frequencies
in the ion direction for which the outgoing drift wave
couples to the ion temperature gradient instability. In this
range of frequencies, the outgoing waves will amplify as
they propagate away from the island.

The application of the outgoing-wave boundary condi-
tion is complicated here by the nonlinear and nonlocal na-
ture of the solution, as well as by the secular divergence of
H at large |x|. In order to treat the secular divergence, we
seek the response ¢4 (x, &) for a one-sided electron stream
function H (x, &) = H(Q(x, £))O(x). The Fourier trans-
form of H(x, ¢) is well defined for J(k,) < 0. A par-
ticular solution ¢+, follows by performing the Fourier
inversion integral for e /T, = —wH /G on a contour
lying slightly below the real k, axis. The general solution
¢+ is the sum of this particular solution with the forward
and backward propagating plane waves satisfying the dis-
persion relation. We may evaluate the asymptotic form of
¢+ p(x, ) for x — +o0 by deforming the contour upwards.
In the most common case where the dispersion relation has
a single pair of real roots *k,o, we find

¢+ﬂ(~x’§) -~ &(.X) + &(-x’f)a

where ¢(x) = (x — o/vV2)ww/L,w«, and ed(x,&)/
T, = wkyoI[H ko, £)e™*0*]/boG'(by) are the residues
of the poles at k, = 0 and k, = *kyo, respectively.
Here by = k2op?/2 and G' = dG/db. For x — —, by
contrast, deforming the integration contour downwards
shows that ¢ 1 ,(x, £) decays exponentially.

We next construct the general solution of Eq. (10),
¢(x, &), by antisymmetrizing the solution ¢+ described
above: @(x,&) = P+ (x, &) — p+(—x,&). The function
¢ (x,&) has the asymptotic behavior ¢ ~ ¢(x) +
occ(€)coskeox + s(&€)sinkyox, where c(€) = @(0, &)
and s(¢) is a free function resulting from the antisymmet-
ric homogeneous solution. We determine this free function
by matching ¢ to a Fourier superposition of outgoing
waves,

x—oo, (1D
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0, &) ~ 0x D dmcoslkwlx] — ma, ], (12)

m=0

where the d,, are free parameters and the coefficient o, =
sgn(w) ensures that (12) represents waves with incoming
phase velocity. This corresponds to an outgoing group
velocity, since the drift wave is a backward wave [15]. We
complete the asymptotic matching by observing that ¢(¢)
is an even function of ¢ and thus has the Fourier expansion
c(€) = _,cmcosmé. It follows that d,, = ¢, and

s(é) = o, Z Cp Sinmé . (13)
m=1

This completes the description of the solution of Eq. (10)
in the regime 0 < w/w., < 1. A salient feature of the
solution is the presence of odd terms in ¢. These terms
give rise to polarization currents in phase with B, which,
when crossed into the magnetic field, exert a tangential
force on the island.

The results of the numerical solution of Eq. (10) are
shown in Figs. 1-3. Figure 1 shows the velocity profile
along a chord crossing the island through the O point for
pi = 02w and 7 = 1 (dotted line). Note the jump in ve-
locity stemming from the adiabatic part of the ion response.
The fluid limit (dashed line), by contrast, is continuous.
Figure 2 shows the effect of the polarization current on
stability, given by R[A .1 (w)] 2(a), and on the drag force
S[Apoi(w)] resulting from electron drift-wave radiation
2(b). Parametric studies show that the width of the stable
band lying to the left of the electron-drift frequency in-
creases rapidly with p;/w, but that the depth of the stabi-
lizing region is approximately independent of p;/w.

The oscillatory behavior of the radiative drag and A
as a function of frequency in the region of wave emission

Apo]

(a) 15

FIG. 2. Real (a) and imaginary (b) parts of the stability pa-
rameter A, as a function of frequency. The solid, dashed, and
dotted lines are for n; = 0, 1, and 2, respectively. The real and
imaginary parts indicate the effect of the polarization drift on
stability (R[Apo1]) and on the radiative torque (I[Apo1]).

215003-3



VOLUME 87, NUMBER 21

PHYSICAL REVIEW LETTERS

19 NOVEMBER 2001

3

0 T 2n
g
FIG. 3. Contour lines of the electric potential (approximate

stream function for the ion flow) in the fluid limit (7 — ) for

w4/l — w+./w = 7 p;. The solid lines represent flux surfaces,
and the thick dashed line is the separatrix.

(Fig. 2) is caused by the resonances that occur when the is-
land width is a multiple of the radial wavelength of the drift
wave. This is illustrated in Fig. 3, where the equipotentials
are shown for an island of width equal to one transverse
wavelength of the drift wave. It should be noted that, by in-
troducing convection cells or eddies within the separatrix,
standing drift waves help to resolve the discontinuity in
the electric field on the separatrix. That is, the convection
cells act as ball bearings, reducing the friction associated
with the slippage of the island through the plasma. This
suggests that the excitation of standing drift waves inside
the separatrix could be favored by collisional transport pro-
cesses, a possibility that needs to be explored using a non-
linear ion response. Another noteworthy feature in Fig. 3
is the bow wave emanating from the island as it propagates
through the plasma.

The emission of drift waves raises interesting questions
regarding the interaction of islands with background elec-
trostatic turbulence, and may be an important element for
understanding turbulence in finite 8 plasmas. Our results
indicate that the primary mode of interaction is the ex-
change of momentum between the turbulence and the is-
land. An improved understanding of this process could
lead to the use of magnetic islands to modify zonal flow
dynamics, and thus to instigate and control transport bar-
riers in magnetic fusion confinement devices.

In summary, we have shown that there exist two bands
of frequency where the polarization drift is stabilizing: the
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first extending from the ion diamagnetic frequency to very
near the electric-drift frequency, and the second extending
to the left of the electron-drift frequency and of variable
width. We have further shown that for 0 < w/w., < 1
the island emits drift waves, resulting in a radiative drag.
These drift waves propagate to the ion-Landau damping
region kjv; ~ w where they are reabsorbed. The wave
emission is clearly an important ingredient in determining
the propagation frequency of the island, and thus its stabil-
ity in hot plasmas, particularly when collisional dissipation
effects are small.
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