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Exact Calculation of the Linear Term in the Density Expansion
of the Dynamic Structure Factor of a Dilute Gas
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We evaluate the linear term in the density expansion of the dynamic structure factor for a classical gas
using a generalized Enskog theory developed by one of the authors, which enables us to describe the
dynamics at small time and length scales where the use of the Boltzmann equation is severely limited.
Agreement of the theory with experiment and simulation is very good. We find that the linear term is
very sensitive to the shape of the potential so that the dynamic structure factor can serve as a good probe
to determine the intermolecular potentials of dilute gases.
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The static properties of moderately dense gases can be
expressed systematically in power series expansions in the
number density n, where the leading term n = 0 refers to
the ideal gas and the higher terms involve the intermolecu-
lar potentials between the particles. The virial expan-
sion of the equation of state is the best known example
[1]. Also, neutron diffraction has been applied on rare
gases [2—4] to measure the static structure factor S(k)
as a function of wave vector k and n, where S(k) = 1
for n = O refers to the ideal gas. From the coefficients
in the density expansion of S(k), one obtains directly the
microscopic interactions between the particles in an exact
manner, in particular, the pair potential ¢(r) as a func-
tion of interparticle distance r. The dynamic properties
of moderately dense gases (such as transport coefficients)
have been treated in a similar manner. Here, to describe the
first order corrections to the ideal gas limit, one needs the
Boltzmann equation for dilute gases. This equation, de-
fined for any intermolecular potential, ¢ (r), is exact for
n — 0 as long as the observed length scale r > o with
o a typical diameter of the particles and time scale ¢ >
Tint = 0 /v, Where Tip iS a typical interaction time,
v = 4/+/27 Bm is the thermal velocity of the particles
with mass m at temperature T, and 8 = 1/kgT. Thus
Tine 1S the time a particle needs to travel the distance o
with thermal velocity vy,. These two limitations are due
to the fact that Boltzmann assumed pointlike particles col-
liding instantaneously which is correct when r > ¢ and
t > Tin. Recently, Verkerk et al. have conducted inelas-
tic neutron scattering experiments and observed the lin-
ear term in the density expansion of the dynamic structure
factor, S(k, w), for dilute argon for the first time [5]. The
results as a function of k and frequency w were com-
pared with the theoretical prediction obtained using the
Boltzmann equation, which reads

Sk, w)
S(k)
where S(k) = [~ dw S(k, ) is the static structure factor

tending to 1 for n = 0. The leading term describes the
ideal gas behavior, i.e.,
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with the dimensionless reduced frequency w® given by
w* = w/kvg. The first order correction term has been
written as [6]

(1) _ 2 Sll(k . w)
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with [ =1/ \/5 mno? the mean free path between col-
lisions so that /n is independent of n. It is a direct
consequence of the Boltzmann equation that s1,(k, w) =
s11(w™) depends only on @™ (not on k), where the shape
of s11(w”) depends on the intermolecular potential ¢ (r).
In Ref. [5], it was found that the experimental result for
S(k, w) agrees qualitatively well with the Boltzmann re-
sult of Eq. (3) for hard spheres at small wave vectors k
but, as k increases, the discrepancies are pronounced, es-
pecially at small frequencies. Most notably, these experi-
ments showed that s1;(k, w) is not a single function of @™
but also sensitively depends on k, exhibiting the limitation
of validity of the Boltzmann equation itself even when the
system is ideally dilute. Recent experiments [7] at even
lower densities n confirmed these observations. Bafile
et al. [8,9] implemented a molecular dynamics simulation
for a Lennard-Jones gas with parameters corresponding to
the experiments, again showing that s1;(k, ) not only de-
pends on w* but also on k. In addition, we have shown
previously [10] that, using the Boltzmann equation, the
function s11(@™) for hard spheres is not significantly dif-
ferent from that calculated for Lennard-Jones potentials.
Hence, to understand the experiments [5] and the molecu-
lar dynamics simulation [8,9], one needs a theory which
extends the Boltzmann approach beyond its range of va-
lidity, i.e., to small times (large frequencies) ¢ < i, and
small lengths (large wave vectors) r < o. One can use the
revised Enskog theory [6,11] to explore the dynamics of
the arbitrarily large wave vectors but this method is limited
to hard-sphere fluids.

Recently, Miyazaki et al have developed a novel
method to calculate correlation functions of dilute and
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semidilute gases with arbitrary potentials [12,13]. They
derived a frequency and wave-vector-dependent “Enskog-
type” collision operator which enables us to explore
arbitrarily short length and short time regimes.

In this Letter, we apply this generalized “Enskog the-
ory” and calculate exactly the linear term in the density
expansion of S(k, w) for the first time and explain the ex-
perimental and simulation results. We show that the linear
term is dependent on the wave vector and really sensitive
to the potential shape.

Here, we consider only a classical gas interacting with
the (12-6) Lennard-Jones potential defined by ¢(r) =
4€{(o/r)* — (o/r)®}, where € is the depth of potential,
and o is the distance at which ¢(r) = 0. The dynamic
structure factor is defined as the Fourier transformation of
the correlation function of the total density and written as

R Y S B iK-(R;(0) R, (1)}

Sth.w) = —— f_w dre' = ,-,,,-Z:1<e ), (@)
where N is the total number of the atoms, R;(¢) is the posi-
tion of the ith atom at a time 7, and (- - -) is the average over
an equilibrium ensemble at temperature 7. We can expand
this in terms of the density, leading to Egs. (1)—(3). Using
the Boltzmann equation and the corresponding Boltzmann
operator, Ag, s11(k, w) can be written as [6,10]

i (o)
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A
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where v is the actual velocity of an atom. It was shown
that s11(k, w) is a function of @™ only and independent
of k. If k™' is the order of interaction length o or
o !is comparable with the mean interaction time iy,
one cannot use Ap anymore and it should be replaced
by a wave-vector- and frequency-dependent alternative, a
so-called generalized Enskog operator, Agg(w). Accord-
ing to Refs. [12,13], it is written, in the low density limit,
as Apx(w) = Mg + TI'k(w). My is the mean field opera-
tor defined, for an arbitrary function of velocity A(v), by

si(k,w) =

X Re<

MgA(v) = @ f av' fo(v)ik - (v + v)AN'), (6)

where h(k) is the pair correlation function given by the
Fourier transformation of ¢ #¢(") — 1 and fo(v) is the

Maxwellian distribution function. ['k(w) is the binary
collision operator given, in real time representation, by

1 . .
rk(Z)A(V) = m[ drf dvle—zk~r/2iLle—zk~(v+v)t/z

X e PO fo(v) fo(v")e L {e™® TA(v)
+ e TIRT25 (v (7)

where iL is the Liouville operator for a pair of atoms which
have initial velocities, v and v/, and are separated by a
distance r. iL; is the interaction term of /L. The time
evolution operator ¢ ‘%' acts on all terms on the right-hand
side of it. Thus, one needs the trajectories, v(z), v/(¢), and
r(z), of a pair of colliding atoms at arbitrary time ¢. They
are given by the solution of the equation of motion for two
particles. In polar coordinates, it is given by

r(t)
t=[ dr' f(r') and

r2

r(t) /
0(t) = 2vur sinﬁf dr' £

where f(r) = 1/\/4{E — ¢(r)}/m — 4v?sin’f, and E
is the total energy for a pair of atoms. The constants
of integration can be chosen such that the solutions sat-
isfy the initial conditions, r(r = 0) = r, etc. For the
hard-sphere case, Eqs. (6) and (7) reduce to those given
in Refs. [6,11]. In the small k¥ and @ limit, they become
the familiar Boltzmann operator [10,13,14]. By operat-
ing Agx(w) on A(V) = (iow + ik - v)7!, we can evaluate
s11(k, ). The final expression is written as s1;(k, w) =

s(ﬁ)(k,w) + s(l;i)(k, ). The first term is the mean field

contribution given, in units where m = o = kg = 1, by

kh(k) s
V2m
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and the second term is the binary collision contribution
given by

(a)

s (w, k) =

()
S11

1 o0
k,w) = —f dt F(k,t)coswt,
m™Jo

| where

2k?
F(k, t) = —ﬁ

where (x,y) = 02/9xdy(sinx — siny)/(x — y), ér| =
(r; —r)/2, and ry, v; denote the position and velocity
at time ¢t — t, respectively. Note that neither s(ﬁ)(k, )

b . . )
nor s(“)(k, w) is a function of w* only. We have evalu-
ated the multidimensional integration of the above expres-
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sion numerically using the Gaussian quadrature routine.
After evaluating F(k, t), the fast Fourier transform (FFT)

. b
routine was used to transfer to s(ll)(k, w). Lennard-Jones
parameters used in the calculations are those for argon;
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o = 0.34 nm and €/kg = 120 K. In Fig. 1, we show the
results for four wave vectors along with the result of the ex-
periment [5] and the molecular dynamics simulation [8,9].
All results are for temperature 7 = 300 K.

Our theory agrees well with experiment, at least semi-
quantitatively. The agreement with the simulation results is
very good for all wave vectors. Considering the difficulties
in experiments and simulation to separate s;(k, w) from
the ideal gas contribution, the agreement is regarded as
satisfactory. One sees that s1;(k, w) is really sensitive

to the wave vector. Both the mean field term s(ﬁ)(k, )

and the binary collision term s(l}i)(k, w) are found to be
sensitive to the wave vector. For small wave vectors, the
results are qualitatively similar to those calculated from the
Boltzmann equation. But, as the wave vector increases,
the difference with the Boltzmann results is pronounced;
the amplitudes shrink and the values at small w* become
positive for large k, a feature seen in both experiment and
simulation.

One might conjecture that this behavior at large k is
the crossover of collective to single atom dynamics. It is
known that, in the large wave vector limit, the dynamics
of collective quantities becomes indistinguishable from
that of a single atom. The linear term in the density
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FIG. 1. s1i(k, ) for argon for several wave vectors: (a) k =
05nm™ ', (b)k =071nm ™', (c)k =122nm ', and (d) k =
1.5 nm~!. Solid lines are from the present theory. The dotted
line is the result from Boltzmann theory for the hard sphere
according to Kamgar-Parsi [6]. The filled circles in (b) and
(c) are experimental results by Verkerk [5] for k = 0.7 and
1.2 nm™', respectively. Empty circles are molecular dynamics
simulation results by Bafile er al. [8,9].
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expansion of the dynamic structure factor for a single
atom, s1;(k, ), was calculated by Montfrooij et al. [15]
for a hard-sphere gas using the Lorentz-Boltzmann
operator, the single atom counterpart of the Boltzmann
operator, Ap. For hard spheres, s1;(k, ) exhibits nearly
out-of-phase behavior from s;;(k, w) as shown by the
dotted lines in Fig. 1. However, what is observed for large
k is not this crossover. A generalized Enskog operator
for single atom motion is given by a similar operator
as Apk(w). The only difference is the absence of the
mean field contribution [Eq. (6)] and the second term in
parentheses of ['k(¢) in Eq. (7). The differences between
the two operators disappear as k increases because of the
phase randomization of the e’** terms in h(k) and in
Eq. (7). Combining this with the fact that the major con-
tribution of the integral over r in Eq. (7) originates from
values of the integrand around r = ¢, we estimate that
the crossover to single atom motion occurs at ko > 1.
The highest wave vector in Fig. 1, however, corresponds
to ko = 0.51, which is far too small to see any crossover.
We have checked this by calculating both s;;(k, @) and
s11(k, @) for larger k. We found that the apparent hike of
the line from negative to positive values in Fig. 1 is a mere
oscillation present at small ko. We confirmed that the
crossover occurs only when k = 15 nm™'; wave vectors
far beyond the limit the experiment can explore. For such
large wave vectors, however, 1/k becomes comparable
with the thermal de Broglie wavelength and, there-
fore, a quantum mechanical analysis will be required [16].

Now that we have the tool in hand to calculate s11(k, @)
for arbitrary potentials, wave vectors, and frequencies ex-
actly, we can go back to the original question posed by
Verkerk et al.: Is s11(k, w) really sensitive to the poten-
tial shape? 1In order to answer this question, we calculated
s11(k, w) for both Lennard-Jones and hard-sphere poten-
tials. The effective hard-sphere diameter corresponding to
the Lennard-Jones gas, o, is determined as a distance
where the Lennard-Jones atom hits the repulsive part of
the potential, i.e., ¢ (oerr) = kpT. The result is shown in
Fig. 2 for the lowest and highest wave vectors considered
in the simulation.

For k = 0.5 nm™!, the difference between the two
potentials is conceivable but not as big as we have seen
in the previous paper [10]. As the wave vector increases,
each line starts to deviate from that at k = 0.5 nm™!
but in the opposite direction and, at k = 1.5 nm™!, the
overall behavior is completely different. We have also
calculated s1;(k, w) for larger k and found that, in the
large-k limit, both Lennard-Jones and hard-sphere results
approach s7{(k,w) which is insensitive to the potential
shape. But their behavior in the crossover region around
k = 15 nm~! is completely different.

In conclusion, we have confirmed that the linear term of
the density expansion of the dynamic structure factor is in-
deed sensitive to the shape of the intermolecular potential.
Therefore, as Verkerk et al. have expected, probing the
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FIG. 2. Comparison between the Lennard-Jones potential
and hard-sphere potential for (a) k = 0.5 nm™! and (b) k =
1.5 nm~!. The solid lines are for the Lennard-Jones and the
dotted lines are for the hard sphere. The molecular dynamics
simulation results by Bafile e al. are shown by empty circles.

dynamic structure factor of dilute gases can be as direct
and powerful a way to investigate the intermolecular poten-
tial as the static correlation such as S(k). This sensitivity
might explain rather large discrepancies between the ex-
perimental results from theory and simulation in Fig. 1(c).
The discrepancy might be attributed to the difference of the
real potential for argon from the Lennard-Jones potential.
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