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Measurement of Lagrangian Velocity in Fully Developed Turbulence
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We have developed a new experimental technique to measure the Lagrangian velocity of tracer par-
ticles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to
the velocity of a single particle at a turbulent Reynolds number Rl � 740, with two decades of time
resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has
a Lorentzian form EL�v� � u2

rmsTL��1 1 �TLv�2�, in agreement with a Kolmogorov-like scaling in the
inertial range. The probability density functions of the velocity time increments display an intermittency
which is more pronounced than that of the corresponding Eulerian spatial increments.
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Lagrangian characteristics of fluid motion are of funda-
mental importance in the understanding of transport and
mixing. It is a natural approach for reacting flows or pol-
lutant contamination problems to analyze the motion of
individual fluid particles [1]. Another characteristic of
mixing flows is their high degree of turbulence. For prac-
tical reasons, most of the experimental work concerning
high Reynolds number flows has been obtained in the
Eulerian framework. Lagrangian measurements are chal-
lenging because they involve the tracking of particle tra-
jectories: enough time resolution, both at small and large
scales, is required to describe the turbulent fluctuations.

Early Lagrangian information has been extracted from
the dispersion of particles, following Taylor’s approach.
Recently numerical and experimental studies have fo-
cused on resolving the motion of individual fluid or
tracer particles. The emerging picture is as follows.
The one-component velocity autocorrelation function is
quasiexponential with a characteristic time of the order
of the energy injection scale [2–4]. The velocity power
spectrum is supposed to have a scaling EL�v� ~ v22, as
recently reported [5,6] and expected from Kolmogorov
similarity arguments. In the same spirit, the second order
structure function should scale as DL

2 �t� � C0et, where
e is the power dissipation and C0 is a universal constant.
Measurements of atmospheric balloons [7] have given
C0 � 4 6 2, and a limit C0 ! 7 has been suggested in
stochastic models [8]. Recent experiments [9,10] using
high speed optical techniques have shown that the statistics
of the Lagrangian acceleration are strongly non-Gaussian.

We have developed a new experimental method, based
on sonar techniques [11], in order to study in a labora-
tory experiment the Lagrangian velocity across the inertial
range of time scales. We obtain the first measurement of
single particle velocity for times up to the flow large scale
turnover time, at high Reynolds number. In this Letter, we
report the results of these measurements and compare with
previous observations and numerical predictions.

Our technique is based on the principle of a continuous
Doppler sonar. A small �2 mm 3 2 mm� emitter continu-
0031-9007�01�87(21)�214501(4)$15.00
ously insonifies the flow with a pure sine wave, at fre-
quency f0 � 2.5 MHz (in water). The moving particle
backscatters the ultrasound towards an array of receiving
transducers, with a Doppler frequency shift related to the
velocity of the particle: 2pDf � q ? v. The scattering
wave vector q is equal to the difference between the inci-
dent and scattered directions. A numerical demodulation
of the time evolution of the Doppler shift gives the com-
ponent of the particle velocity along the scattering wave
vector q. It is performed using a high resolution para-
metric method which relies on an approximated maximum
likelihood scheme coupled with a generalized Kalman fil-
ter [11]. The study reported here is made with a single
array of transducers so that only one Lagrangian velocity
component is measured.

The turbulent flow is produced in the gap between two
counterrotating disks [12]. This setup has the advan-
tage of generating a strong turbulence in a compact re-
gion of space, with no mean advection. In this way,
particles can be tracked during times comparable to the
large eddy turnover time. Disks of radius R � 9.5 cm
are used to set water into motion inside a cylindrical ves-
sel of height H � 18 cm. To ensure inertial entrain-
ment, the disks are fitted with eight blades with height
hb � 5 mm. In the measurement reported here, the power
input is e � 25 W�kg. It is measured on the experi-
mental cooling system, from the injection-dissipation bal-
ance. The integral Reynolds number is Re � R2V�n �
6.5 3 104, where V is the rotation frequency of the disks
(7.2 Hz), and n � 1026 m2�s is the kinematic viscosity
of water. A conventional turbulent Reynolds number can
be computed from the measured rms amplitude of velocity
fluctuations (urms � 0.98 m�s) and an estimate of the Tay-
lor microscale (l �

p
15nu2

rms�e � 0.88 mm); we obtain
Rl � 740. This value is consistent with earlier studies in
the same geometry; it corresponds to the range of turbulent
Reynolds numbers where measurements of particle accel-
eration have been reported [10].

The flow is seeded with a small number of neutrally
buoyant (density 1.06) polystyrene spheres with diameter
© 2001 The American Physical Society 214501-1
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d � 250 mm. It is expected that the particles follow the
fluid motion up to characteristic times of the order of the
turbulence eddy turnover time, at a scale corresponding to
their diameter, i.e., tmin � d�ud � e21�3d2�3, using stan-
dard Kolmogorov phenomenology. For beads of diame-
ter 250 mm, one estimates tmin � 1.3 ms. This value is
within the resolution of the demodulation algorithm whose
cutoff frequency is at 3 kHz. Note that the Kolmogorov
dissipative time (th �

p
n�e � 0.2 ms) is smaller, so that

we do not expect to resolve the dissipative region. The sta-
tistical quantities are calculated from 3 3 106 velocity data
points, taken at a sampling frequency equal to 6500 Hz.
The acoustic measurement zone is in central region of the
flow, 10 cm thick in the axial direction and almost span-
ning the cylinder cross section. In this region the flow is a
good approximation to isotropic and homogeneous condi-
tions: at all points, the mean velocity is nonzero, but equal
to about one-tenth of its rms value.

We first consider the Lagrangian velocity autocorrela-
tion function:

RL�t� �
�y�t�y�t 1 t��t

�y2�
. (1)

We observe (see Fig. 1a) that it has a slow decrease
which can be modeled by an exponential function
ry�t� � e2t�TL . This expression defines an integral
Lagrangian time scale TL � 22 ms. For comparison, the
period of rotation of the disks is 140 ms and the sweeping
period of the blades is 17 ms. The measured Lagrangian
time scale thus appears as a time characteristic of the
energy injection. The exponential reproduces extremely
well the variation of the autocorrelation function, from
about 5th at small scales to 4TL. These limits coincide
with the upper and lower resolution of the technique,
so that we observe an exponential decay over the entire
range of our measurement. However, as the variance of
the acceleration must be finite [10] there has to be some
lower cutoff to this behavior, at times of order th . These
observations extend and confirm previous numerical
and experimental studies at moderate Reynolds numbers
[2,3,6]. Note that the exponential decay of the Lagrangian
velocity autocorrelation is a key feature of stochastic
models of dispersion since it appears as a linear drift term
in a Langevin model of particle dynamics [1,8].

We show in Fig. 1b the velocity power spectrum, com-
puted both from the data and as the Fourier transform of
the exponential decay of the autocorrelation function:

EL
fit�v� �

u2
rmsTL

1 1 �TLv�2
. (2)

We observe a clear range of power law scaling EL�v� ~
v22. This is in agreement with a Kolmogorov K41 pic-
ture in which the spectral density at a frequency v is a di-
mensional function of v and e: EL�v� ~ ev22. To our
knowledge, this is the first time that it is directly observed
at high Reynolds number and in a laboratory experiment,
214501-2
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FIG. 1. (a) Velocity autocorrelation function. A best exponen-
tial fit is rL

y �t� � 1.03e245.7t. It is shown, slightly shifted for
clarity, as the linear curve in the inset. (b) Corresponding power
spectrum; the upper curve is the Lorentzian function calculated
from the exponential fit of the autocorrelation function (shifted
for clarity). The inset shows the compensated spectrum v2ELv.

although it has been reported in oceanic studies [5] and in
lower Reynolds number direct numerical simulations [6].
Departure from the Kolmogorov behavior is observed at
low frequencies in agreement with the exponential decay
of the autocorrelation. At high frequencies, the spectrum
deviates from the Lorentzian form due to the particle re-
sponse. Note in Fig. 1b that the measurement is made over
a dynamical range of about 60 dB.

We now consider the second order structure function of
the velocity increment,

DL
2 �t� � ��y�t 1 t� 2 y�t��2�t � ��Dty�2� . (3)

We emphasize that these are time increments, and not
space increments as in the Eulerian studies. The profile
DL

2 �t� is shown in the inset of Fig. 2. It is linked to the
autocorrelation by DL

2 �t� � 2u2
rms�1 2 RL�t��: at small

times one observes the trivial scaling DL
2 �t� ~ t2 and at

large times DL
2 �t� saturates at 2u2

rms [as y�t� and y�t 1 t�
become uncorrelated].

In between these two limits, one expects an inertial
range of scales with a Kolmogorov-like scaling

DL
2 �t� � C0et , (4)

where C0 is a “universal” constant. Such a behavior is
consistent with dimensional analysis and with an v22 scal-
ing range in the velocity power spectrum. Figure 2 shows
214501-2
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FIG. 2. Second order structure function. Inset: profile DL
2 �t�

as a function of time, nondimensionalized TL. In the main figure
the second order structure function is nondimensionalized by the
Kolmogorov scaling et.

DL
2 �t��et; a plateau with a constant C0 is not observed.

Note that this is also the case in Eulerian measurements
when the third order structure function is represented in
linear coordinates [13]. The function reaches a maximum
at 20th, for which C0 � 2.9. This value is in agreement
with the estimation C0 � 4 6 2 in [7] and in the range
of values (between 3 and 7) used in stochastic models for
particle dispersion [14]. In our case there may also be a
bias at small times due to particle effects. However, if
we assume the exponential fit for the velocity autocorrela-
tion function to be valid down to the smallest scales, we
obtain a value C0 � 3.5 as an upper bound for the maxi-
mum of DL

2 �t��et. In our set of measurements between
Rl � 100 and Rl � 1100, we have observed an increase
of C0 (defined in the same way) from 0.5 to 4. We point out
that in the absence of an equivalent of the Kármán-Howarth
relationship for the Lagrangian time increments, a limit
value of C0 is not a priori fixed. Dimensional analysis
yields DL

2 �t� � C0�Re�et and similarity arguments give
C0�Re� ! const or C0�Re� ! Rea in the limit of infinite
Reynolds numbers.

To further describe the statistics of the Lagrangian ve-
locity fluctuations, we have analyzed the statistics of the
velocity increments Dty. Their probability density func-
tion (PDF) Pt for t covering the accessible range of
time scales is shown in Fig. 3. To emphasize the func-
tional form, the velocity increments have been normal-
ized by their standard deviation so that all PDFs have unit
variance. A first observation is that the PDFs are sym-
metric, in agreement with the local symmetries this flow.
Another is that the PDFs are almost Gaussian at integral
time scales and progressively develop stretched exponen-
tial tails for small time increments. At the smallest in-
crement, the stretched exponential shape is in agreement
with measurements of the PDF of Lagrangian acceleration
at identical Reynolds numbers [10]. In our case, the limit
form of the velocity increments PDF is not as wide as that
of the acceleration because the Kolmogorov scale is not
214501-3
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FIG. 3. PDF stPt of the normalized increment Dyt�st . The
curves are shifted for clarity. From top to bottom: t � 0.15,
0.3, 0.6, 1.2, 2.5, 5, 10, 20, and 40 ms.

resolved. Note that in regards of the evolution of the PDF,
the intermittency is at least as developed in the Lagrangian
frame as it is in the Eulerian one [15].

The continuous evolution with scale can be quantified
using the flatness factor. We show in Fig. 4 the variation
of the excess kurtosis K�t� � ��Dty�4����Dty�2�2 2 3.
It is null at integral scale as expected from the Gaussian
shape of the PDF and increases steeply at small scales.
Below about 5th, the increase is limited by the cutoff
of the particle; an extrapolation of the trend to th yields
K�th� � 40 in agreement with acceleration measurements
in [10].

More generally, one can choose to describe the evolution
of the PDFs by the behavior of their moments (or “structure
functions”) DL

q �t� � �jdtyjq�. Indeed, a consequence of
the change of shape of the PDFs with scale is that their
moments, as the flatness factor above, vary with scale.
Classically in the Eulerian picture, one expects scaling
in the inertial range, DE

q �r� ~ rzq , at least in the limit
of very large Reynolds numbers. At the finite Reynolds
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FIG. 4. Evolution of the excess kurtosis factor K�t� �
��Dty�4����Dty�2�2 2 3 for the PDFs of the time velocity
increments.
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FIG. 5. ESS plots of the structure function variation (in dou-
ble log coordinates). The solid curves are best linear fits with
slopes equal to jL

q � 0.56 6 0.01, 1.34 6 0.02, 1.56 6 0.06,
and 1.8 6 0.2 for p � 1, 3, 4, and 5 from top to bottom. Co-
ordinates in arbitrary units.

number where most experiments are made, the lack of a
true inertial range is usually compensated by studying the
relative scaling of the structure functions — the extended
self-similarity, or ESS, ansatz [16]. We use the second
order structure function as a reference. Indeed, the
dimensional estimation of DL

2 (as that of DE
3 ) depends

linearly on the increment and on the dissipation. Figure 5
shows that, as in the Eulerian frame, a relative scaling is
observed for the Lagrangian structure functions of orders
1 to 5, DL

q �t� ~ DL
2 �t�jq . We observe that the relative

exponents follow a sequence close to, but more intermit-
tent than the corresponding Eulerian quantity. Indeed, we
obtain j

L
1 �j

L
3 � 0.42, j

L
2 �j

L
3 � 0.75, j

L
4 �j

L
3 � 1.17,

j
L
5 �j

L
3 � 1.28 to be compared to the commonly accepted

Eulerian values [17] j
E
1 �j

E
3 � 0.36, j

E
2 �j

E
3 � 0.70,

j
E
4 �j

E
3 � 1.28, j

E
5 �j

E
3 � 1.53.

In conclusion, using a new experimental technique, we
have obtained a Lagrangian velocity measurement that
covers the inertial range of scales. Our results are con-
sistent with Kolmogorov-like dimensional predictions for
214501-4
second order statistical quantities. At higher orders, the ob-
served intermittency is very strong. How the Lagrangian
intermittency is related to the statistical properties of the
energy transfers is an open question. From a dynamical
point of view, the Navier-Stokes equation in Lagrangian
coordinates could be modeled using stochastic equations.
Work is currently underway to compare the dynamics of
the Lagrangian velocity to predictions of Langevin-like
models.
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