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Bloch-Nordsieck Violation in Spontaneously Broken Abelian Theories
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We point out that, in a spontaneously broken U(1) gauge theory, inclusive processes, whose primary
particles are mass eigenstates that do not coincide with the gauge eigenstates, are not free of infrared
logarithms. The charge mixing allowed by symmetry breaking and the ensuing Bloch-Nordsieck violation
are here analyzed in a few relevant cases and in particular for processes initiated by longitudinal gauge
bosons. Of particular interest is the example of weak hypercharge in the standard model where, in
addition, left-right mixing effects arise in transversely polarized fermion beams.
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The planning of TeV scale accelerators has brought
attention to the fact that the standard model, at energies
larger than the weak scale, shows enhanced double log
corrections [1] of infrared origin, even in inclusive observ-
ables. Such enhancements, involving the effective cou-
pling �aW�4p� log2�s�M2

W �, signal a lack of compensation
of virtual corrections with real emission in the M2

W ø s
limit, due to the non-Abelian (weak isospin) charges of the
accelerator beams. In other words, the Bloch-Nordsieck
(BN) cancellation theorem [2], valid in QED, is here
violated.

The key point which invalidates the BN cancellation
is the fact that gauge boson emission off one incoming
beam state changes it into another state of the same gauge
multiplet (e.g., a neutrino for an incoming electron) and the
latter happens to have a different cross section off the other
beam. As a consequence, virtual corrections are unable
to cancel this contribution except on the average, i.e., by
summing over all possible beams in the multiplet.

It is usually thought that such a phenomenon cannot
occur in the Abelian case, because initial states (the mass
eigenstates) are charge eigenstates, which do not change
during the (neutral) gauge boson emission, so that the real-
virtual cancellation is valid.

In this Letter we point out that, in the case of sponta-
neous symmetry breaking, the BN theorem is also violated
in Abelian theories. The point is that, in a broken theory,
mass eigenstates can be mixed charge states, so that soft
boson emission is off diagonal. For instance, if a nor-
mal Higgs mechanism [3] is assumed, longitudinal gauge
bosons can occur as (massive) initial states which act as
mixed charge states and interact with the (similarly mixed)
Higgs boson. As a consequence, longitudinal and Higgs
bosons are interchanged during soft emission, and the
basic noncancellation mechanism is again at work, as in
the non-Abelian case illustrated previously.
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In order to understand this point, let us recall the struc-
ture of soft interactions accompanying a hard process of the
type �aIpI � ! �aFpF�, where I � 1, 2, F � 1, 2, . . . , n,
and p’s and a’s denote momenta and charge states, re-
spectively, of initial and final asymptotic states, which are
mass eigenstates. The corresponding S matrix is an opera-
tor in the soft Hilbert space and a matrix in the hard labels,
of the form [4,5]

S � U
F
aFa 0

F
�as, ay

s �, SH
a0

Fa 0
I
�pF , pI �, U I

a 0
IaI

�as,ay
s � , (1)

where UF and U I are unitary coherent state operators,
functionals of the soft emission operators as, ay

s . They
take in the Abelian case a simple eikonal form [4] and
are diagonal with respect to charge eigenstates, i.e., they
have a well-defined form for each energetic particle of
well-defined charge.

An inclusive observable is obtained by squaring and
summing Eq. (1) over soft final states. In this procedure,
the coherent state UF cancels out by unitarity, and we are
left with the overlap matrix

ObI aI � S�0jU Iy
bIb

0
I
�SHySH �b

0
Ia

0
I
U

I
a 0

IaI
j0�S , (2)

where an average over the state with no soft quanta is made
in the initial state. We also refer to O H � SHySH as
the hard overlap matrix, and we allow, in general, bI fi

aI , even if a cross section with initial charge state aI is
diagonal, i.e., saI � OaIaI (no sum over aI �.

The Abelian Bloch-Nordsieck cancellation theorem is
valid if the initial mass eigenstates are also charge eigen-
states. In fact, in such a case, U I is diagonal with re-
spect to the labels aI � �a1, a2� which represent definite
charges, i.e.,

U
I
a

0
I aI

� da 0
I aIU

aI pI ,

UaIpI � Pi�1,2U
aipi �as, ay

s � .
(3)
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Therefore, the inclusive cross section becomes, by Eq. (2),

saI � OaIaI � S�0jUaIpIyOH
aIaI

UaI pI j0�S , (4)

where aI , in both U and Uy, is now the same set of labels
(with no sum). Since soft operators occur only in the U’s,
the latter commute with OH , and soft enhancements cancel
out by unitarity, in a trivial way.

The above reasoning fails in the non-Abelian case, be-
cause both U and OH are (noncommuting) matrices in a
non-Abelian charge multiplet, and the unitarity sum cannot
be used. But it fails in the Abelian case too, if the initial
states are not charge eigenstates, as allowed by symmetry
breaking. In such a case, the coherent states are not diag-
onal in the initial labels aI , and normally do not commute
with the hard overlap matrix OH . More precisely, by in-
troducing the mixing matrix MAa and the overlap matrix
OAB in the charge eigenstates basis �A�, we obtain

saI
� OaIaI

�
X
A,B

M
y
aI BOBAMAaI

. (5)

While soft enhancements cancel out by Eq. (4) in the di-
agonal terms OAA of the sum (5), they are nonvanishing in
the off-diagonal terms OAB (A fi B), which are induced
by the mixing, so that the BN theorem is violated.

We will illustrate the above features in the example of
the longitudinal sector of the U(1) Higgs model [3].

The Lagrangian in a ’t Hooft gauge is

L � �DmF�1DmF 2 V	F1F
 2
1
4

FmnFmn

2
1

2z
�≠mAm 2 zMF�2 1 C̄�iD� 2 m�C , (6)

where F 2 y�
p

2 � H � �h 1 if��
p

2 is the Higgs
field, V is the potential, M is the gauge boson mass,
z is the gauge parameter, and charged fermions of mass m
have been introduced. We also take Mh � M as the
h field mass, the case Mh ¿ M being discussed in [6].

The states we consider are the Higgs boson h and the
longitudinal boson AL

m � L as prepared, for instance, by
coupling to initial charges in a boson fusion process. Am-
plitudes with external longitudinal bosons are related, at
high energies E ¿ M, to the Goldstone boson amplitudes
by the equivalence theorem [7]

eL
m�p� �

pm

M
1 O

µ
M
E

∂

eL
m�p�Mm�p; . . .� �

pm

M
Mm�p; . . .� � iM	f�p�; . . .
 ,

�p2 � M2� , (7)

where the remaining amplitude labels are understood. For
this reason, the soft emission properties in the L�h sector
are determined by the current h�x�$≠mf�x� of the scalar
sector.

At leading double log level, the emission of a soft gauge
boson off an energetic longitudinal boson changes it into a
211802-2
Higgs boson, and all subsequent interactions are described
by the eikonal current

J
mi
ab�k� � e

pm

pk
qi

ab �a, b � f,h� , (8)

where qi � t2 is just a Pauli matrix connecting the L�f

and h indices and acting on the charge index of the ith leg
(i � 1, 10, 2, 20 ) (see also [6], where the relation between
longitudinal bosons and scalars in eikonal approximation
is worked out in detail). The peculiarity of Eq. (8) is that
it is off diagonal, as expected from the fact that mass
eigenstates are the mixed charge states h � 1�

p
2 �H 1

Hy�, f � 2i�
p

2 �H 2 Hy�.
Furthermore, in the ’t Hooft –Feynman gauge we work

with, the leading double log corrections come from in-
terference terms in which a vector boson is emitted off
leg i1 � 1, 10 (with momentum p1� and absorbed on leg
i2 � 2, 20 (with momentum p2�, the squared contributions
being power suppressed at high energies. We then obtain
the total eikonal factor

e2 p1p2

�p1k� �p2k�
�q1 2 q10� �q2 2 q20�

�s � 2p1p2 ¿ M2� .
(9)

The actual evaluation of double logs from Eq. (9) is
simplified by the remark that the total eikonal current
Jm�k� �

P
i J

m
i u�k� is conserverd in the fixed-angle, high-

energy regime s ¿ M2 that we are investigating. This
means that

kmJm�k�O �
X

i

qiO � �q1 1 q2 2 q10 2 q20 �O � 0 ,

(10)

so that the total t-channel charge Q � q1 2 q10 � q20 2

q2 is conserved and the eikonal current takes the form

Jm � e
P

i qi
p

m

i

pik � eQ� p
m

1

p1k 2
p

m

2

p2k �. The eikonal radia-
tion factor in Eq. (9) can thus be written, by including
phase space, as

2Q2 e2

8p3

Z d3k
2vk

p1p2

p1kp2k
� 2Q2L , (11)

where L � �a�4p� log2�s�M2� is the effective double
log coupling mentioned above. The structure of radiative
corrections is then the one depicted in Fig. 1(a), where
for each power of a the operator 2Q2 � 2�q1 2 q0

1�2 �
22�1 2 q1q0

1� is applied. Notice that the term q1q0
1 ex-

changes the h and f indices on both legs, as anticipated
earlier. If we fix a2 � b2 � L, and define sa � saL

(a � L, h � f,h�, the action of q1q0
1 on the a indices is

that of a t1 Pauli matrix. Therefore, by restoring the full
radiation factor, we find

sa � �e22L �12t1��absH
b , (12)

where the sH ’s are the hard (tree-level) cross sections.
The final result (12) is easily recast in the diagonal form
211802-2
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FIG. 1. Picture of radiative corrections to the overlap matrix
in (a) the mass eigenstate basis and (b) the charge eigenstate
basis, where off-diagonal matrix elements occur. Each figure
represents the sum of diagrams in Eq. (11), and effective eikonal

vertices � p
m

1 u
p1k 2

p
m

2 u
p2k � are understood.

sLL 1 shL � sH
LL 1 sH

hL,

sLL 2 shL � �sH
LL 2 sH

hL�e24L .
(13)

This means that the average cross section has no ra-
diative corrections, while the difference is suppressed by
the form factor corresponding to t-channel charge Q2 � 4.
Therefore, at infinite energy, radiative corrections equalize
the longitudinal and Higgs cross sections.

The occurrence of the t-channel charge Q2 � 4 is re-
lated to the basic fact that h and L are not charge eigen-
states, because of symmetry breaking at low energies. In
fact, by rewriting the cross sections in terms of the charge
eigenstates H and Hy and by using charge conjugation in-
variance, we find

sLL � shh � 1
2 	sHH 1 sHH̄ 1 ReO �HH̄ ! H̄H�
 ,

sLh � 1
2 	sHH 1 sHH̄ 2 ReO �HH̄ ! H̄H�
 ,

(14)
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where, as in Eq. (5), we notice the occurrence of the off-
diagonal overlap matrix elements O and Oy, correspond-
ing to the values Qtot � q1 2 q0

1 � 62 of the total charge
in the t-channel [Fig. 1(b)]. While the diagonal terms sHH

and sHH̄ correspond to Q � 0 and have no form factor,
the off-diagonal terms are suppressed by the form factor
with Q2 � 4 found previously. Therefore, from Eq. (14),
we find the expressions

sLL�s� � shh�s� � 1
2 �sH

LL 1 sH
Lh�

1
1
2 �sH

LL 2 sH
Lh�e24L , (15)

sLh�s� � 1
2 �sH

LL 1 sH
Lh� 2

1
2 �sH

LL 2 sH
Lh�e24L ,

which are equivalent to Eq. (13). The derivation based on
Eq. (14) makes it clear that this phenomenon is not limited
to longitudinal and Higgs states, but applies to any mixed
charge states which are allowed by symmetry breaking.

Our final comment is about longitudinal couplings to
external charges, e.g., fermions of mass m, which make
the above effect observable. It is known that, by fermion
current conservation, longitudinal polarizations are sup-
pressed by a factor M2�k2

T with respect to transverse
polarizations, where k2

T denotes the boson transverse
momentum, related to its virtuality. However, if M ¿ m,
then the longitudinal k2

T distribution is dominated by
k2

T � O�M2�, yielding a cross section of the same order
as the transverse one [8]. The situation changes in the
limit of a vanishing symmetry breaking parameter. In
fact if M ø m, the longitudinal k2

T distribution is cut
off by m2, rather than M2, thus yielding a cross section
of relative order M2�m2, which vanishes eventually.
Therefore, in the vanishing M�m limit, gauge symmetry
and BN theorem are recovered at the same time.

The U(1) Higgs model just discussed is a prototype. A
slightly more complicated example, which is relevant to
planned accelerators, is electroweak theory itself. Here
the gauge group is SU�2�L ≠ U�1�Y , and important BN
violating corrections are found in the longitudinal sector
[6] of both non-Abelian and Abelian types. The latter
survives in the formal limit of vanishing isospin coupling
and has a structure similar to the one illustrated here.

An additional peculiarity of the standard model is that,
because of the chiral nature of the gauge group, mas-
sive fermions of mass m are themselves a superposition
of left and right states of different weak hypercharge (and
isospin). Therefore, by the general argument of Eqs. (5)
and (15), Abelian double logs are also expected for fermion
beams. If initial beams are longitudinally polarized, the
left-right mixing is small at high energies, so that the cor-
responding off-diagonal overlap is suppressed by a fac-
tor m2�s, and was not explicitly considered before [1].
Transverse polarizations, however, are a superposition of
left and right states with comparable weights: mixing is
therefore maximal, as in the longitudinal boson case con-
sidered so far. The corresponding off-diagonal overlap
provides the azimuthal dependence [9] of the inclusive
211802-3
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cross section at tree level, and is then affected at higher
orders by the appropriate double log form factor (carrying
t-channel quantum numbers Y � tL � 1�2 in the present
case). Polarized beam effects thus provide another instance
in which infrared enhancements related to mixing are to be
investigated.
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