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Nonlinear Micromechanical Casimir Oscillator
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The Casimir force between uncharged metallic surfaces originates from quantum-mechanical zero-point
fluctuations of the electromagnetic field. We demonstrate that this quantum electrodynamical effect has
a profound influence on the oscillatory behavior of microstructures when surfaces are in close proxim-
ity �#100 nm�. Frequency shifts, hysteretic behavior, and bistability caused by the Casimir force are
observed in the frequency response of a periodically driven micromachined torsional oscillator.
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Casimir forces are interactions between electrically neu-
tral and highly conductive metals [1,2]. They are regarded
as one of the most striking manifestations of quantum fluc-
tuations. The boundary conditions imposed on the electro-
magnetic fields lead to a spatial redistribution of the mode
density with respect to free space, creating a spatial gradi-
ent of the zero-point energy density and hence a net force
between the metals.

The last few years have witnessed a resurgence of ex-
periments [3–5] on these forces following the high pre-
cision measurements by Lamoreaux [6] using a torsional
pendulum. Pioneering measurements were performed by
Sparnaay [7] followed later by the work of Van Blok-
land and Overbeek [8] who accurately verified the exis-
tence of the Casimir effect. Between two parallel plates,
the Casimir force is attractive and assumes the form Fc �
2p2h̄cS�240z4, where c is the speed of light, h̄ is Planck
constant�2p, S is the area of the plates, and z is their sepa-
ration. In practice, one of the interacting surfaces is usually
chosen to be spherical to avoid alignment problems, mod-
ifying the force to Fcs � 2p3 h̄cR�360z3, where R is the
radius of the sphere [9].

Casimir forces are inherently mesoscopic in nature since
they can acquire substantial values when the separation
between the metallic surfaces is reduced to #100 nm. In
addition, because of their topological nature associated
with the dependence on the boundary conditions of the
electromagnetic fields, their spatial dependence and sign
can be controlled by tailoring the shapes of the interacting
surfaces [10]. The above considerations have motivated us
to investigate the effect of these quantum electrodynamical
forces on the mechanical properties of artificial mi-
crostructures. Microelectromechanical systems (MEMS)
[11] are ideally suited for these studies because their
moving parts can be engineered with high precision using
state-of-the-art silicon integrated circuits technology and
their separation can be controlled with high accuracy
down to submicron distances [12].

In a previous paper we demonstrated the effect of the
Casimir force on the static properties of micromechanical
systems [5]. We used the deflection of a micromachined
plate by a microsphere for a high precision measurement of
0031-9007�01�87(21)�211801(4)$15.00
the Casimir force. Other studies have focused on adhesion
and sticking of mobile parts in MEMS due to the Casimir
effect [13]. In this Letter we show that Casimir interactions
have a profound effect on the dynamic properties of mi-
crostructures. In particular, we report on the experimental
realization of a forced micromechanical nonlinear oscilla-
tor in which the anharmonic behavior arises solely from
the Casimir effect. A similar oscillator had been proposed
and theoretically analyzed by Serry, Walliser, and Maclay
[12]. While there is vast experimental literature on the
hysteretic response and bistability of nonlinear oscillators
in the context of quantum optics, solid-state physics, me-
chanics, and electronics, the experiment described in this
Letter represents, to our knowledge, the first observation
of bistability and hysteresis caused by a quantum electro-
dynamical effect.

A simple model of the Casimir oscillator consists of a
movable metallic plate subjected to the restoring force of
a spring obeying Hooke’s law and the nonlinear Casimir
force arising from the interaction with a fixed metallic
sphere (Fig. 1 inset). For separations d larger than a criti-
cal value [12], the system is bistable: the potential energy
consists of a local minimum and a global minimum sepa-
rated by a potential barrier (Fig. 1). The local minimum
is a stable equilibrium position, about which the plate un-
dergoes small oscillations. The Casimir force modifies the
curvature of the confining potential around the minimum,
thus changing the natural frequency of oscillation and also
introduces high order terms in the potential, making the
oscillations anharmonic.

We realize such an oscillator making use of MEMS
technology. The micromachined oscillator consists of a
3.5-mm-thick, 500-mm2 polysilicon plate (metallized on
the top with gold) free to rotate about two torsional rods
on opposite edges (right inset in Fig. 2). The fabrication
steps of a similar device used to study static effects of
Casimir forces are described in Ref. [5]. We excite the
torsional mode of oscillation by applying a driving voltage
to one of the two electrodes that is fixed in position un-
der the plate (left inset in Fig. 2). The driving voltage is a
small ac excitation Vac with a dc bias Vdc1 to linearize the
voltage dependence of the driving torque. The top plate is
© 2001 The American Physical Society 211801-1
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FIG. 1. Inset: a simple model of the nonlinear Casimir os-
cillator (not to scale). Main figure: elastic potential energy of
the spring (dotted line, sping constant � 0.019 N m21), energy
associated with the Casimir attraction (dashed line) and total
potential energy (solid line) as a function of plate displacement.
The distance d, measured between the sphere (100 mm radius)
and the equilibrium position of the plate in the absence of the
Casimir force, is chosen to be 40 nm.

grounded while the detection electrode is connected to a
dc voltage Vdc2 through a resistor. Oscillatory motion of
the top plate leads to a time varying capacitance between
the top plate and the detection electrode. For small os-
cillations, the change in capacitance is proportional to the
rotation of the plate. The detection electrode is connected
to an amplifier and a lock-in amplifier measures the output
signal at the excitation frequency.

The measurement is performed at room temperature
and at a pressure of less than 1 mtorr. Despite the soft
torsional spring constant �k � 2.1 3 1028 N mrad21�,
the resonance frequency of the torsional mode is main-
tained reasonably high due to the small moment of inertia
�I � 7.1 3 10217 kg m2� of the top plate. The resonance
peaks of the oscillator for different excitation voltages
(Fig. 2) are fitted very well by the black curves represent-
ing driven motions of a damped harmonic oscillator. As
expected, the resonance frequency remains constant at
2753.47 Hz, while the peak oscillation amplitude increases
linearly with excitation. This clearly demonstrates that the
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FIG. 2. Resonance peaks of the torsional oscillator at exci-
tation voltage amplitudes of 35.4 mV (triangles) and 72.5 mV
(circles). The solid lines are fits to the data based on a driven
harmonic oscillator. Inset (right): schematic of the torsional os-
cillator (not to scale). Inset (left): cross section of the device
with the electrical connections and measurement circuit.
211801-2
oscillator behaves linearly in the absence of forces from
external objects.

To investigate the effect of the Casimir force on the os-
cillator, we placed a 200-mm-diameter polystyrene sphere
(metallized with gold) close to one side of the oscillator
(Fig. 3 inset). The distance z between the sphere and the
equilibrium position of the top plate (i.e., without the peri-
odic driving torque) is varied by a closed-loop piezoelec-
tric stage. In the presence of the sphere, the equation of
motion for the oscillator is given by

ü 1 2g �u 1 �v2
0 2 �b2�I�F 0�z��u � �t�I� cosvt 2 au2

2 bu3, (1)

where t is the amplitude of the driving torque, b is the
lateral distance of the sphere from the center of the top
plate, v0 �

p
k�I is the fundamental frequency of the

oscillator, g is the damping coefficient, a � b3F00�z��2I
and b � 2b4F 000�z��6I. F 0�z�, F 00�z�, and F 000�z� denote
the first, second, and third spatial derivatives of the exter-
nal force F, respectively, evaluated at distance z. In our
experiment, F is either the Casimir force or an applied
electrostatic force between the sphere and the top plate.
To obtain Eq. (1), F�z 2 bu� has been Taylor expanded
about z up to u3. For small oscillations where the nonlinear
terms u2 and u3 can be neglected, the external force mod-
ifies the mechanical resonance frequency of the oscillator
by an amount that is proportional to the force gradient:

v1 � v0�1 2 b2F 0�z��2Iv2
0 � . (2)

To calculate b, we deliberately apply a voltage to the
sphere to set up an electrostatic force gradient. Then we
record the change in resonance frequency of the oscilla-
tor as we vary the distance z by changing the piezoexten-
sion. The gradient of the electrostatic force Fe between
the sphere and the top plate is given by
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FIG. 3. Change in resonance frequency of the oscillator in
response to the electrostatic force (circles, V � 408.5 mV) and
Casimir force (squares) as a function of distance. The amplitude
of the excitation is 8.2 mV, producing oscillations of the plate
with an amplitude of 5.8 nm at its closest point to the sphere.
The solid and dashed lines are fits obtained with Eqs. (3) and
(4), respectively. Inset: schematic of the experiment (not to
scale). The oscillation angle u indicated by the curved arrow
is measured from the equilibrium position of the plate in the
absence of driving torque.
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F 0
e�z� � e0pR�V 2 V0�2��Dz 1 z0�2 for Dz 1 z0 ø R ,

(3)

where e0 is the permittivity of vacuum, R is the radius
of the sphere, V is the voltage applied to the sphere, V0

is the residual voltage on the sphere, z0 is the distance of
closest approach of the sphere from the plate, and Dz is
the separation between the sphere and plate measured from
z0, so that z � Dz 1 z0. Here z0 is not the minimum
achievable separation. While it is possible to extend the
piezo further to decrease the value of z0, we did not attempt
to do so in order to prevent the top plate of the oscillator
from jumping into contact with the sphere. The residual
voltage V0 arises from the work function difference of the
two gold surfaces (on the sphere and on the top plate) as
a result of slight variations in the preparation of the films
[5,8]. V0 is found to be 75 mV by fixing the distance z
and identifying the voltage V at which the maximum of the
quadratic voltage dependence of the resonance frequency
occurs.

We perform a fit of the resonance frequency shift of the
oscillator (solid line in Fig. 3) in response to the electro-
static force gradient using Eqs. (2) and (3) with z0 and
b as fitting parameters (determined to be 122.4 nm and
131.0 mm, respectively). We then set the voltage V on
the sphere equal to the residual voltage V0 to eliminate
the electrostatic contributions to the force gradient. In
Fig. 3, the squares are the shifts in resonance frequency
obtained when we repeat the measurement with V � V0.
The dashed line is a fit to the predicted frequency shift
[Eq. (2)] due to the Casimir force gradient assuming per-
fectly conducting surfaces:

F 0
cs�z� � p3h̄cR�120�Dz 1 z1�4, (4)

where z1 is the distance of the sphere from the plate at the
distance of closest approach (determined to be 85.9 nm
from the fit). As we discussed in an earlier experiment
[5], for an exact comparison of data with theory the finite
conductivity and surface roughness of the metal films must
be taken into account [14]. However, we do not attempt
such a precise comparison here because contributions from
the higher order derivatives of the Casimir force modify
the shift calculated from Eq. (2) by more than 5% at the
smallest separations, as we discuss later. As a result the
uncertainty in deducing the Casimir force from the mea-
sured frequency shift [using Eq. (2)] is in excess of 5%
at the closest separation. This value is significantly larger
than the experimental error in our earlier static measure-
ment �#1%�. However, in the linear regime dynamic tech-
niques are expected to ultimately yield a higher sensitivity
than static measurements [15].

To demonstrate the nonlinear effects introduced by the
Casimir force, we first retract the piezo until the sphere is
more than 3.3 mm away from the oscillating plate so that
the Casimir force has a negligible effect on the oscillations.
The measured frequency response shows a resonance peak
211801-3
that is characteristic of a driven harmonic oscillator (peak I
in Fig 4a), regardless of whether the frequency is swept up
(hollow squares) or down (solid circles). This ensures the
excitation voltage is small enough so that intrinsic nonlin-
ear effects in the oscillator are negligible in the absence
of the Casimir force. We then extend the piezo to bring
the sphere close to the top plate while maintaining the ex-
citation voltage at fixed amplitude. The resonance peak
shifts to lower frequencies (peaks II, III, and IV), by an
amount that is consistent with the distance dependence in
Fig. 3. Moreover, the shape of the resonance peak devi-
ates from that of a driven harmonic oscillator and becomes
asymmetric. As the distance decreases, the asymmetry be-
comes stronger and hysteresis occurs. This reproducible
hysteretic behavior is characteristic of strongly nonlinear
oscillations [16]. For a given excitation t and frequency
v, the amplitude of oscillation A is given by the roots of
the following equation:

A2��v 2 v1 2 kA2�2 1 l2� � t2�4I2v2
1 , (5)

where k � 3b�8v1 2 5a2�12v
3
1 characterizes the non-

linear effects. When the nonlinearity is weak, Eq. (5)
has only a single positive solution for A2. In the pres-
ence of strong nonlinearity, such as those introduced by
the Casimir force in our experiment, the oscillation am-
plitude A becomes triple valued for a range of frequency,
corresponding to the three positive roots of A2 in Eq. (5).
The solid lines in Fig. 4a show the predicted frequency re-
sponse of the oscillator with v1 and k determined by the
first, second, and third spatial derivatives of the Casimir
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FIG. 4. (a) Hysteresis in the frequency response induced by
the Casimir force on an otherwise linear oscillator. Hollow
squares (solid circles) are recorded with increasing (decreasing)
frequency. The distance z between the oscillator and the sphere
is 3.3 mm, 141 nm, 116.5 nm, and 98 nm for peaks I, II, III,
and IV, respectively. The excitation amplitude is maintained
constant at 55.5 mV for all four separations. The solid lines
are the calculated response using Eq. (5), with k � 0, 23.1 3
107, 21.0 3 108, and 22.8 3 108 rad22 s21 for peaks I, II, III,
and IV, respectively. The peak oscillation amplitude for the
plate is 39 nm at its closest point to the sphere. (b) Oscillation
amplitude as a function of distance with excitation frequency
fixed at 2748 Hz.
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force at z � 98 nm, 116.5 nm, 141 nm, and 3.3 mm, re-
spectively. The values of other parameters �g, b, I, t� are
identical for all four resonance peaks. At a particular dis-
tance, the spatial derivatives of the Casimir force deter-
mine both the frequency and the shape of the resonance
peaks without any other adjustable parameters. Indeed,
the shape and the frequency of peaks II and III agree well
with Eq. (5). For peak IV, the hysteretic effects are very
strong and deviations from Eq. (5) become apparent. This
discrepancy arises from contributions of higher order spa-
tial derivatives that we neglected in the series expansion of
the Casimir force [Eq. (1)], as well as corrections to the
Casimir force as a result of finite conductivity and rough-
ness of the surfaces [14].

An alternative way to demonstrate the “memory” effect
of the oscillator is to maintain the excitation at a fixed fre-
quency and vary the distance between the sphere and the
plate (Fig. 4b). As the distance changes, the resonance fre-
quency v1 of the oscillator shifts, to first order because of
the changing force gradient [Eq. (2)]. In region 1, the fixed
excitation frequency is higher than the resonance frequency
and vice versa for region 3. In region 2, the amplitude of
oscillation depends on the history of the plate position. De-
pending on whether the plate was in region 1 or region 3
before it enters region 2, the amplitude of oscillation dif-
fers by up to a factor of 6. This oscillator therefore acts as
a sensor for the separation between the two surfaces.

In Fig. 4a, we used a constant quality factor Q � 7150
to fit all four resonance peaks at different distances. Fur-
ther improvements in sensitivity could enable us to explore
possible changes in Q with distance. There has been an
interesting prediction [17] that dissipative retarded van der
Waals forces can arise between surfaces in relative mo-
tion due to the exchange of virtual photons which couple
to acoustic phonons in the material. Similar dissipative
Casimir forces can arise between metals; here virtual pho-
tons would couple to particle-hole excitations in the metal
[18]. This would lead to changes in the Q of our os-
cillator with position. It is also interesting to point out
that the nonuniform relative acceleration of the metal and
the sphere will lead, at least in principle, to an addi-
tional damping mechanism associated with the parametric
down-conversion of vibrational quanta into pairs of pho-
tons, a quantum electrodynamical effect associated with
the nonlinear properties of vacuum. This phenomenon,
which was investigated theoretically by Lambrecht, Jackel,
and Reynaud in the context of a vibrating parallel plate
capacitor [19], is an example of the so called dynamical
Casimir effect, i.e., the nonthermal radiation emitted by
uncharged dielectric bodies in a state of nonuniform accel-
eration [20]. Although this effect is completely negligible
in our system, it does represent a fundamental lower limit
to the damping of the Casimir oscillator.

Finally, we remark that nonlinear effects in a mechanical
oscillator arising from ordinary electrostatic forces were
studied by several groups [21,22]. In particular, Buks and
211801-4
Roukes [22] considered the role of the Casimir force in
such nonlinear oscillators. While the relative strength of
the electrostatic force to the Casimir force was not given,
using their smallest separation of 0.77 mm and 30 V be-
tween the surfaces we estimate that in their experiment the
Casimir force is roughly 106 times smaller than the electro-
static force before pull-in assuming a simple parallel plate
model. Therefore, quantum effects such as the Casimir
force have a negligible effect on the nonlinearity observed
in their oscillator, though the pull-in and sticking of their
oscillator might in part be due to the Casimir force.
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