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Collapse, or a gravitational-like phase transition, is found in microcanonical ensembles of particles
with an attractive 1�ra potential not only for a � 1 but for all 0 , a , 3. The phase behavior of the
system is complex: If an effective sufficiently short-range cutoff is applied, the density of the collapsed
phase is finite everywhere; if not, the collapse results in a density singularity. Also, with increasing
effective cutoff range, the gravitational phase transition will cross over to a normal first-order phase
transition.
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It is known that particle systems with purely attrac-
tive gravitational 1�r interactions exhibit collapse, some-
times called a zero-order phase transition (cf. Fig. 1 at ec).
When the energy in the microcanonical ensemble (ME)
or the temperature in the canonical ensemble (CE) drops
below a certain critical value ec or Tc, respectively, the
corresponding thermodynamic potentials (entropy in the
ME or free energy in the CE) undergo a discontinuous
jump [1–3]. If no short-range cutoff is introduced, then
the discontinuous jump is infinite and the entropy and free
energy go to 1` and 2`, respectively. This makes all
normal (noncollapsed) states of the self-attractive system
metastable with respect to such a collapse; the collapse
energy ec is in fact an energy below which the metastable
states cease to exist.

If, on the other hand, some form of short-range cutoff
is introduced, the entropy and free energy jumps are finite.
In this case, as a result of the collapse, the system goes
into a nonsingular state with a dense core, the precise na-
ture of which depends on the details of the short-range
behavior of the potential. Then only the normal states
which are in some interval of energies above the collapse
point are metastable with respect to such a transition (see
Fig. 1). There is an energy e� for which both collapsed
and normal systems have the same entropy (cf. e�

1 and e�
2

in Fig. 1); above this energy the collapsed state becomes
metastable and at some higher energy it ceases to exist
[4,5]. It is possible to regard the energy e� as that where a
true phase transition occurs. When the effective cutoff van-
ishes, such phase transition energy e� increases to infinity.
Therefore without a cutoff all the finite energy states are
metastable [6]; however, the value of e� is highly sensitive
to the details of the short-range cutoff. On the contrary, the
collapse energy ec depends on the long-range part of the
interparticle interactions and is almost unaffected by a cut-
off, provided that it is sufficiently short range.

While rather elaborate studies of gravitational collapse
have usually been motivated by cosmological applications
and were performed solely for an 1�r potential, a natu-
ral question is as follows: What happens if the particles
interact via an attractive 1�ra potential with arbitrary
-1 0031-9007�01�87(21)�210601(4)$15.00
a? The most common example of a potential with such
power-law dependence is probably the dipole-monopole
(a � 2) interaction. It has been noticed before that, in
systems with nonintegrable interactions, i.e., when a
is less than the dimensionality of the space, first-order
phase transitions differ in the ME and in the CE, even
for N ! ` [7]. However, in the examples considered in
the literature, the potential energy was always bounded
from below (usually by putting the system on a lattice),
allowing only for normal first-order phase transitions and
excluding any singular collapse.

In this Letter, we report on studies of collapse in self-
attracting systems, similar to the gravitational Hamiltonian
particle systems, but with a general 1�ra potential. Be-
low, we consider three-dimensional systems as being the
most common, yet the results can be easily generalized to
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FIG. 1. Sketch of an entropy vs energy plot for a system with
gravitational-like collapse. The entropy of the normal (noncol-
lapsed) state is shown by a solid line; the entropies of the two
collapsed states for different cutoff ratio r1 and r2, r2 , r1, are
shown by dashed lines. The entropies of the two collapsed states
intersect the entropy of the normal state at energies e�

1 and e�
2 .
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arbitrary dimensionality. We will consider systems only in
the ME, since it generally allows one to obtain more infor-
mation about phase transitions than the CE [7–9].

The entropy per particle s�e� � S�e��N in the mean-
field (saddle-point) approximation can be expressed as (see
[2,10])

s�e� �
3
2

ln
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e 1

1
2
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where r��r � is a solution of the following integral equation:
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Here e � ERa�GN2 is a dimensionless energy, R is
the radius of the confining spherical container, N is the
number of particles interacting via a 2G�j�ri 2 �rjj

a pair
potential, and the integrations run over the 3D sphere
of radius one. Here we consider only 0 , a , 3, for
which the potential 1�ra is often called nonintegrable,
since the integral

R
d3r�ra diverges at its upper limit. As

the potential becomes integrable (a . 3), the continuum
approach used here becomes inapplicable because the
short-range density fluctuations, which the continuous
approach cannot account for, become dominant over the
long-range effects. Formally, the short-range nature of
the behavior of the systems for a . 3 manifests itself as
the divergence of the integral

R
d3r�ra at its lower limit.

If bs is considered as an independent parameter rather
than a factor depending on e and r��r�, Eq. (2) is often
called a generalized Poisson-Boltzmann-Emden equation
[11]. Very little is known about this equation even in
the gravitational a � 1 case. The only exactly known,
so-called “singular,” solution is for bs � 2 [11] and has
the form rsing�r� � �4pr2�21, which leads to e � 21�4
and s � ln�

p
2 p� 2 2.

To solve Eq. (2) numerically for general a and e, we
use a simple iterative method. We put a trial density profile
r0�r� into (2), calculate bs and obtain a new density profile
r1�r�, and repeat this procedure iteratively. In other words,
a nonlinear map,

ri11�r� � Fe�ri �?�, r� , (3)

is introduced, with a functional Fe�ri�?�, r� defined by (2).
Performing a local stability analysis, we show [10], that the
convergence of the map (3) to a certain r�r� is a sufficient
condition for r�r� to be a stable or metastable thermody-
namic state. However, to make it a necessary condition as
well, i.e., to make the iterative method convergent for all
210601-2
thermodynamically stable or metastable states, we have to
introduce a map with a variable “step,”

ri11�r� � sF�ri �?�, e� 1 �1 2 s�ri�r� , (4)

where 0 , s # 1 is the step size parameter. Choos-
ing s sufficiently small (as small as �1022 1023) , we
were able to make the algorithm convergent for all density
profiles that maximize entropy (1), i.e., are thermodynami-
cally stable or metastable states. Once a sufficient conver-
gence of the iterations (4) has been achieved,

4p
Z 1

0
jri11�r� 2 ri�r�jr2 dr , d ø 1 , (5)

the entropy is calculated with (1).
The main result that can be derived from the numerical

analysis is the following: For all 0 , a , 3, as for a �
1, there is a certain energy ec�a� below which the system
collapses and the entropy exhibits a discontinuous jump.
The results for ec�a� are presented in Fig. 2.

To verify our calculations of ec�a�, we compare our
result for ec�a � 1� with the existing data obtained by
other methods. Our number, ec�a � 1� � 20.3346, is
consistent with ec�a � 1� � 20.335, quoted in [3,4].

To get more insight, let us consider in more detail a
system with a � 1�2. Plots of the entropy s�e� and the
inverse temperature bs�e� � ds�e��de of this system are
presented in Fig. 3.

As we go down along the energy axis e, the entropy
decreases, passing through an inflection point ei where
b reaches its maximum bm. For energies below this
inflection point, the system has a negative specific heat
[d2s�e��de2 . 0] and is therefore unstable in the CE. As
we pass through the ei point and continue decreasing the
energy, the convergence of (3) becomes slower and slower,
and at the point ec the iterations start to diverge. It is
straightforward to show for all 0 , a , 3 (see, e.g., [11]
for a � 1) that the entropy is unbounded from above with
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FIG. 2. Plot of collapse energy ec�a� vs potential exponent a.
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FIG. 3. Plots of entropy s�e� and entropy derivative bs�e� for
noncollapsed states (solid lines) and collapsed states (dashed
lines) for a � 1�2. The radius of excluded central volume
r0 � 5 3 1024. The points ec , e�, eu, and ei are defined in
the text.

respect to uniform squeezing of all the matter into a sphere
with a radius going to zero. Hence, if no short-range cut-
off is present, it is reasonable to assume that the entropy
discontinuity at ec�a� is infinite.

If some form of a short-range cutoff is introduced, the
entropy discontinuity may become finite. To investigate
this we tried two approaches. One, suggested in [4], is to
place a small spherical excluded volume with a radius r0
in the center of the system, or, in other words, to replace
a spherical container with a spherical shell container. The
other approach is to replace the original “bare” potential
1�ra with a “soft” potential of the form 1��r2 1 r2

0 �2a .
For a reasonably small short-range cutoff (r0 � 1023 for
small a, r0 � 1022 for a � 3 for both approaches) the
behavior of the noncollapsed system is virtually unaf-
fected. A typical density profile in the collapsed phase ex-
hibits a much higher concentration around the origin than
the normal (noncollapsed) phase; plots of density profiles
for a � 1�2 are presented in Fig. 4.

A collapsed phase exists not only for e , ec, but for
e . ec as well. In fact, this phase is globally stable in
the range of energies where its entropy is higher than that
of the normal phase, i.e., when e , e�. For e . e�, the
collapsed phase is metastable and above some energy eu

becomes unstable even locally (see Fig. 3).
Finally we return to the exact rsing�r� � �4pr2�21 so-

lution which exists for e � 21�4 and a � 1. Our at-
tempts to approach this solution by the numerical iterative
methods (3) and (4) failed. In fact, even after substituting
the rsing�r� into (4) as an initial approximation r0�r�, the
iterative solution of (4) evolved either to a normal or to a
collapsed solution depending on the value of the step s.
We calculated the entropies for the three solutions that ex-
ist at e � 21�4: a normal sn, a collapsed sc, and a ssing
210601-3
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FIG. 4. Density profiles r�r� for a � 1�2 for noncollapsed
(solid line) and collapsed (dashed line) phases for the energy
e� � 20.708, when entropies of both phases are the same. The
radius of the excluded central volume is r0 � 5 3 1024.

for rsing. It turns out that ssing , min	sn, sc
, which, to-
gether with the evidence obtained from the iterative proce-
dures mentioned above, strongly suggests that, in the space
of solutions (or fixed points) of (4), both normal and col-
lapsed r�x� are at least locally stable (attractive), while
rsin is unstable (repulsive).

A very important question is that of the order of the
gravitationlike phase transition. Here we have to distin-
guish between the collapse itself, which happens at ec, and
the “true” phase transition which happens at the energy e�

where the entropies of noncollapsed and collapsed states
are equal (see Fig. 3). Since the entropy at the collapse
point ec exhibits a discontinuous jump, the collapse is of-
ten called a zero-order phase transition [2]. However, the
collapse is not a phase transition in the normal sense since
it converts a metastable state into a stable one, which can
be either singular or finite, depending on the presence of a
short-range cutoff.

On the other hand, the true phase transition between
stable phases, which happens at e�, is sometimes referred
to as a “gravitational first-order phase transition” [5]. Its
distinct features include an inability of the two phases
(noncollapsed and collapsed) to coexist as well as a dis-
continuous b�e�, i.e., temperature [5]. Yet in a “normal”
ME first-order phase transition in a long-range interacting
system (such as a mean-field Potts model), b�e� remains
continuous and smooth, but exhibits nonmonotonic behav-
ior: The interval of energies where phases coexist includes
an interval where db�e��de is positive and the specific
heat is negative (see Fig. 5) [7–9]. Hence there is an in-
trinsic difference between the normal and the gravitational
first-order phase transitions. Remarkably, normal first-
order phase transitions are found to replace gravitational
first-order phase transitions, which occur in the self-
attracting systems considered here, if the short-range
210601-3
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FIG. 5. Entropy derivative bs�e� � ds�e��de vs energy e plot
for a � 2 and central core radius 0.5 (solid line), and a � 1
and soft potential radius 0.05 (dashed line).

cutoff is sufficiently increased. As was noted in [5] for
a � 1, there is a critical excluded volume radius rc

above which there is no discontinuity in the entropy vs
energy plot. We observed that this trend is generic for all
0 , a , 3 and holds for both excluded volume and soft
potential cutoffs. The critical cutoff radius rc�a� increases
with increasing a, roughly varying in value from below
1023 for a � 1�4, to above 1021 for a � 5�2, respec-
tively. For a system with a cutoff radius larger than rc�a�,
the entropy vs energy plot is continuous and exhibits all
characteristics of a normal first-order phase transition in
the ME [7,9]: a convex dip and associated with it an
interval of energies, where d2s�e��de2 is positive and the
heat capacity is negative (Fig. 5).

In summary, in this paper we revealed that a collapse
and, associated with it, a discontinuity in the microcanoni-
cal ensemble entropy exist not only in self-gravitating sys-
tems, but in all ensembles of particles with general 1�ra ,
210601-4
0 , a , 3 attractive potential. This discontinuity was
an infinite jump if no short-range cutoff was present. A
carefully introduced short-range cutoff leaves the proper-
ties of the noncollapsed system virtually unaffected, but
makes the entropy jump finite and allows one to observe
the collapsed phase. The stability of a solution r�r� of the
integral equation (4) is the necessary and sufficient con-
dition for the density profile r�r� to make the entropy
a maximum and therefore to represent either a stable or
a metastable state. Furthermore, as the short-range cut-
off of the potential increases, the collapse disappears, and
the gravitational-like first-order phase transition becomes a
normal first-order phase transition, Apart from astrophysi-
cal applications, our results may well be important in con-
densed matter physics where nonintegrable potentials are
quite common.
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