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The Dirac equation for a charged particle in a static electromagnetic field is written for the special
case of a spherically symmetric potential. Besides the well-known Dirac-Coulomb and Dirac-oscillator
potentials, we obtain a relativistic version of the S-wave Morse potential. This is accomplished by adding
a simple exponential potential term to the Dirac operator, which in the nonrelativistic limit reproduces
the usual Morse potential. The relativistic bound-states spectrum and spinor wave functions are obtained.
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The solution of the Dirac-Coulomb problem including
its relativistic bound state spectrum and wave function was
established a long time ago [1–3]. In 1989, the relativis-
tic Dirac-oscillator potential was introduced [4–8] by add-
ing an off-diagonal linear radial term to the Dirac operator.
The relativistic bound states spectrum and its eigenstates
were also obtained explicitly. Taking the nonrelativistic
limit reproduces the usually Schrödinger-Coulomb and
Schrödinger-oscillator solutions, respectively.

It is well established that in nonrelativistic quantum me-
chanics there exist exactly soluble classes of potentials
(shape invariant potentials) [9] that belong to a given dy-
namical symmetry group. One of these classes includes
the Coulomb, oscillator, and Morse potentials. These po-
tentials belong to the symmetry group SO(2,1) [2] and can
be transformed into one another by point canonical trans-
formations [10]. Thus, from the point of view of group iso-
morphism and analyticity of parametric Lie algebras, it is
tempting to look for the relativistic extension of Morse po-
tential. In other words, the fact that the relativistic versions
of the first two problems were solved explicitly makes the
solution of the third, in principle, feasible. In this Letter,
we succeed in finding the “Dirac-Morse” potential and ob-
taining its relativistic bound states and spinor wave func-
tions. This is accomplished by following the same strategy
as that in the Dirac-oscillator problem, namely by adding a
radial term to the odd part of the Dirac operator, which in
this case turns out to be a simple exponential. Moreover,
taking the nonrelativistic limit will recover the standard
Schrödinger-Morse problem.

The general physical setting for this problem is a
charged particle in static and spherically symmetric four-
component electromagnetic potential. After setting up the
problem, we apply a unitary transformation to the Dirac
equation such that the resulting second order differential
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equation becomes Schrödinger-like so that comparison
with well-known nonrelativistic problems is transparent.
Thus, simple correspondence among parameters of the
two problems gives the sought-after bound states spectrum
and wave function.

Preliminaries.— In atomic units (m � e � h̄ � 1) and
taking the speed of light c � a21, the Hamiltonian for a
Dirac particle in four-component electromagnetic potential
(A0, �A) reads

H �

√
1 1 aA0 2ia �s ? �= 1 a �s ? �A

2ia �s ? �= 1 a �s ? �A 21 1 aA0

!
,

where a is the fine structure constant and �s are the three
2 3 2 Pauli spin matrices. In quantum electrodynamics
(the theory of interaction of charged particles with the
electromagnetic field), local gauge invariance implies that
the theory is invariant under the transformation

�A0, �A� ! �A0, �A� 1 �a≠L�≠t, �=L� ,

where L�t, �r� is a real space-time function. That is, adding
a four-dimensional gradient of the gauge field L�t, �r� to the
electromagnetic potential will not alter the physical content
of the theory. In the lab or target frame, gauge invariance
implies that the general form of the electromagnetic po-
tential for static charge distribution with spherical sym-
metry is

�A0, �A� � �aV �r�, �0� 1 �0, �=L�r�� � �aV �r�, r̂W�r�� ,

where r̂ is the radial unit vector. Obviously, W�r� is a
gauge field that does not contribute to the magnetic field.
However, fixing this gauge degree of freedom by taking
W � 0 would not have been the best choice. An alterna-
tive and proper “gauge fixing condition,” which is much
more fruitful, will be imposed as a constraint in Eq. (2)
below. Therefore, the Dirac equation reduces to the fol-
lowing two-component radial differential equation:
0

B@ 1 1 a2V�r� a
h

k

r 1 W�r� 2
d
dr

i
a

h
k

r 1 W �r� 1
d
dr

i
21 1 a2V �r�

1
CA

√
g�r�
f�r�

!
� ´

√
g�r�
f�r�

!
, (1)
where the spin-orbit coupling parameter k is defined as
k � 6� j 1

1
2 � for l � j 6

1
2 and ´ is the relativistic en-

ergy. This equation gives two coupled first order differ-

ential equations for the two radial spinor components. By
eliminating the lower component we obtain a second order
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differential equation for the upper. The resulting equation
may turn out not to be Schrödinger-like, i.e., it may con-
tain first order derivatives. We apply a general local unitary
transformation that eliminates the first order derivative as
follows:

r � q�x� andµ g�r�
f�r�

∂
�

µ cos�r�x�� sin�r�x��
2 sin�r�x�� cos�r�x��

∂ µ
f�x�
u�x�

∂
.

The stated requirement gives the following constraint:

dq

dx

∑
2a2V 1 cos�2r� 1 a sin�2r� 3

�W 1 k�q� 1 a
dr�dx
dq�dx

1 ´

∏
� constant

� h fi 0 . (2)

This transformation and the resulting constraint are the
relativistic analog of point canonical transformation in
nonrelativistic quantum mechanics. Moreover, this con-
straint can also be thought of as the gauge fixing condition
for the electromagnetic potential. In this Letter, we con-
sider the case of global unitary transformation defined by
q�x� � x and dr�dx � 0. Substituting this in the con-
straint equation (2) yields

W�r� �
a

S
V �r� 2

k

r
,

h � C 1 ´ ,

where S � sin�2r� and C � cos�2r�. This maps the ra-
dial Dirac equation (1) into the following:0
B@ C 1 2a2V a

h
2

S
a 1

aC
S V 2

d
dr

i
a

h
2

S
a 1

aC
S V 1

d
dr

i
2C

1
CA

3

µ
f�r�
u�r�

∂
� ´

µ
f�r�
u�r�

∂
, (3)

which in turn gives an equation for the lower spinor com-
ponent in terms of the upper:

u�r� �
a

C 1 ´

∑
2

S

a
1

aC

S
V 1

d

dr

∏
f�r� , (4)

while the differential equation for the upper component
reads∑
2

d2

dr2 1
a2

T2 V 2 1 2´V 2
a

T
dV
dr

2
´2 2 1

a2

∏
f�r� � 0 .

(5)

The Dirac-Morse problem.—We consider the case
where the potential V �r� � 2De2lr with D and l being
real parameters. This introduces an off-diagonal exponen-
tial term in the Dirac operator as seen in Eq. (3). Equa-
tion (5) gives the following second order differential
equation for the upper spinor component:
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∑
2

d2

dr2 1

µ
aD

T

∂2

e22lr 2

aD
T

µ
l 1

2T
a

´

∂
e2lr 2

´2 2 1
a2

∏
f�r� � 0 ,

where T � S�C � tan�2r�. Comparing this with the
Schrödinger equation for the S-wave Morse potential [9]∑

2
d2

dr2 1 B2e22lr 2 B�l 1 2A�e2lr 2 2E

∏
f�r� � 0 .

(6)

We obtain the following correspondence between nonrela-
tivistic and relativistic parameters:

B � aD�T ,

A � �T�a�´ , (7)

E � �´2 2 1��2a2.

The well-known nonrelativistic bound states spectrum of
Eq. (6) is

En � 2
l2

2

µ
A

l
2 n

∂2

; n � 0, 1, 2, . . . , nmax # jA�lj .

(8)

The substitution (7) gives the following relativistic spec-
trum:

´n �
1

1 1 T2

∑
alTn 1

q
1 1 T 2 2 �aln�2

∏
,

where n � 0, 1, 2, . . . , nmax # j1�alj
p

1 1 T2. Taking
the nonrelativistic limit of this spectrum with

a ! 0 ,

´n � 1 1 a2En ,

T � at

reproduces the nonrelativistic spectrum (8) with t � A.
The bound states wave function of the nonrelativistic prob-
lem [9] is mapped, using (7), into the following upper
spinor component wave function:

fn�r� � an�me2lr�yn�2 exp�2 1
2me2lr �Lyn

n �me2lr � ,

where Ly
n �x� is the generalized Laguerre polynomial [11],

an is the normalization constant, and

m � 2�a�lT�D ,

yn � 2

µ
T

al
´n 2 n

∂
.

Equation (4) gives the lower spinor component in terms of
the upper as

un�r� �
a

´n 1 C

µ
2

S
a

2
a

T
De2lr 1

d
dr

∂
fn�r� .
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Using the differential and recursion properties of the Laguerre polynomials [11], we can write it explicitly as

un�r� � 2Tan�me2lr �yn�2 exp�2 1
2me2lr �

∑
Lyn

n �me2lr� 1
�al�T�n 2 2´n

C 1 ´n
L

yn
n21�me2lr �

∏
.

It is instructive, at this point, to apply the above tech-
nique and reproduce the solutions for the other two prob-
lems in this class of relativistic potentials using the same
notation. The physical parameters and bound states spec-
trum obtained for all three problems are listed in Table I.

The Dirac-Coulomb problem.—The second-order dif-
ferential equation for this problem and for a general angu-
lar momentum is as follows [1–3]:∑

2
d2

dr2 1
g�g 1 1�

r2 1 2
Z´

r
2

´2 2 1
a2

∏
f�r� � 0 ,

where Z is the particle charge number and g is the relativis-
tic angular momentum which is related to the spin-orbit
coupling parameter k via the relation k2 � g2 1 a2Z2.
The two components of the radial spinor wave function are

fn�r� � an�lnr�g11e2lnr�2L2g11
n �lnr� ,

un�r� �
aln�2

´n 1 g�k
an�lnr�ge2lnr�2

3 ��1 2 2Z�kln� �2g 1 n 1 1�L2g
n �lnr�

1 �1 1 2Z�kln� �n 1 1�L2g
n11�lr�� ,

where

ln � 2
2Z´n

g 1 n 1 1
.

The Dirac-Oscillator problem.—The second-order dif-
ferential equation for this problem and again for a general
angular momentum, is as follows [4–8]:∑

2
d2

dr2 1
k�k 1 1�

r2 1 z 2r2 1

�2k 2 1�z 2
´2 2 1

a2

∏
f�r� � 0 ,
TABLE I. The potential functions V �r� and W �r�, physical parameters, and bound states spectrum obtained using the technique
developed in this Letter for all three problems.

Dirac-Coulomb Dirac-oscillator Dirac-Morse

V�r� Z�r 0 2De2lr

W �r� 0 zr 2B
p

1 1 �aD�B�2 e2lr 2 k�r

S aZ�k 0 �1 1 �B�aD�2�21�2

C g�k 1 �1 1 �aD�B�2�21�2

´n

"
1 1

√
aZ

g 1 n 1 1

!2#21�2 q
1 1 4a2z �n 1 k 1 1�2�

1
1 1 �aD�B�2

"
�a2lD�B�n 1

q
1 1 �aD�B�2 2 �aln�2

#
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where z is the oscillator strength parameter and k is the
spin-orbit coupling parameter defined as k � 6� j 1

1
2 �

for l � j 6
1
2 . The two components of the radial spinor

wave function are

fn�r� � an�
p

z r�k11e2zr2�2Lk11�2
n �zr2� ,

un�r� �
2a

p
z

´n 1 1
�n 1 k 1 1�2�an�

p
z r�k

3 e2zr2�2Lk21�2
n �zr2� .

Finally, we would like to make three comments which
are relevant for fruitful extension of the present work. The
first is that supersymmetric quantum mechanics should
be a suitable setting for extending this work to investi-
gate other classes of relativistic potentials; for example,
“Dirac-Pöschl-Teller” and “Dirac-Rosen-Morse,” etc. Sec-
ond, an interesting problem is to account for all rela-
tivistic potentials that belong to a given class and find
the corresponding symmetry group and/or its relativistic
extension. Third, relativistic scattering can also be set
up where a general spin-dependent perturbing short-range
potential is superimposed on the reference Dirac Hamil-
tonian, H0, which includes one of these relativistic po-
tentials. Such a program has already been developed for
the Dirac-Coulomb problem using the relativistic J-matrix
method of scattering [12]. The same can, in principle, be
applied to Dirac-Morse potential scattering. In this formal-
ism a proper L2 spinor basis is chosen such that the matrix
representation of the reference Hamiltonian is a tridiagonal
rendering the H0 problem analytically soluble. The solu-
tions of the resulting three-term recursion relation give the
J-matrix kinematical coefficients necessary for scattering
calculation.
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