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Simple Motor Gestures for Birdsongs
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We present a model of sound production in a songbird’s vocal organ and find that much of the com-
plexity of the song of the canary (Serinus canaria) can be produced from simple time variations in
forcing functions. The starts, stops, and pauses between syllables, as well as variation in pitch and
timbre are inherent in the mechanics and can often be expressed through smooth and simple variations
in the frequency and relative phase of two driving parameters
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Human language and the song of many bird species are
both learned by juveniles through experience. The on-
togeny of learned song begins with early food-begging
calls, continues through more complex bablings known as
subsong, to eventually reach an adult form of song which
is first plastic, and later stereotyped [1]. This development
depends on auditory experience, for abnormal forms of
song develop if a juvenile is deafened and unable to hear
its own sound production or is isolated from the experi-
ence of any adult song model to copy. The time course of
development and the dependence on auditory experience
are similar to aspects of human speech, suggesting there
may be common principles of learning and memory under-
lying human speech and the song of birds [2]. A variety
of current experimental approaches are directed towards a
better understanding of how song perception and produc-
tion are represented by the brain and ultimately how ex-
perience shapes the neural changes which establish these
representations [3,4]. However, the broad extent of neural
activity involved in song presents an increasing challenge
for interpretation [S]. In order to understand the link be-
tween brain activity and song, a physical understanding of
the process of sound production in the songbird’s vocal or-
gan is essential. In the following, we demonstrate a simple
mechanism which can account for the acoustic structure of
many song elements. The physical model we describe in-
volves a minimum number of parameters and can account
for a wide range of observed birdsong elements. Fitting
of the model’s parameters in order to reproduce recorded
songs suggests that the acoustic complexity of individual
elements in the song of canaries arises from simple modi-
fications of a very generic gesture in lung pressure and vo-
cal fold tension.

The vocal organ of songbirds, known as the syrinx, has
been the subject of a long history of interesting studies.
The existence of vibrating membranes capable of generat-
ing sound waves was established by Ruppel in 1933 [6].
At present, the precise mechanisms of sound production
in the syrinx are still a matter of debate (see [7] and [8,9]).
Current experiments suggest that the syrinx generates
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sound primarily through oscillation of the lateral labia—
tissue folds which open and close the air passage from the
bronchi to the trachea [10]. Through direct videography
of a phonating syrinx, Larsen and Goller give evidence
that these labia function in a manner homologous to the
human vocal folds [11]. In support of this, Fee et al. have
demonstrated that the transition from periodic to chaotic
vibrations in the Zebra finch syrinx can be modeled by a
classic two-mass model of human vocal fold oscillation
[12,13]. In contrast to these aperiodic sounds, in what
follows, we examine vocalizations composed of locally
periodic waveforms, typical of canaries and many other
species. The primary element of the canary lexicon is the
syllable, a 15-300 ms vocalization of which the canary,
Serinus canaria, typically has a few dozen types.

One of the simplest models to account for the transfer
of the kinetic energy of air to vocal fold oscillations was
introduced by Titze [14]. It is built upon experimental ob-
servation that the human vocal folds support both lateral
oscillations and an upward propagating surface wave [14],
and it successfully predicts the fundamental frequencies
of voiced sounds in terms of sensible physiological pa-
rameters. There is no direct evidence in birds, but this
“flapping” mode of oscillation is consistent with recent
videography of the bird’s syrinx during song, and in the
isolated syrinx [11,13]. As illustrated in Fig. 1, the oppos-
ing labia have a convergent profile when they move away
from each other and a more planar profile when they move
towards each other. This results in a greater pressure on
the labia during the opening phase and an overall gain in
energy in each cycle of oscillation. This mechanism does
not depend on the geometrical details of the folds, but the
calculations are easier with a simplifying geometric hy-
pothesis. By approximating the labia shape with straight
edges as illustrated in Fig. 1, the assumption of a flapping
mode can be written in terms of a phenomenological con-
stant 7 as follows:
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FIG. 1. Illustration of the syrinx, terms of the model, and labial
dynamics. Panel (a) illustrates the songbird syrinx which has
a phonatory labium at the top of each bronchus. Panel (b)
illustrates our assumption of the shape of the labia during a
cycle of oscillation. Panel (c). is a diagram of the terms in our
model. (Here we have drawn only one side of the symmetric pair
of labia in the model.) In each figure, darker shading indicates
higher pressure according to Eq. (3).

dx

b=by+x—r1 a 2)
The upper edge of the labium is denoted a, the lower edge
b, and the center of the labium x. Following Titze, who
uses a (phenomenologically modified) Bernoulli equation
[14], the pressure averaged over the surface of the labia
can be written as a function of bronchial pressure P, and
labial position:

PfZP},(l —a/b). (3)

Substituting equations for b and a into that for Py and
equating this averaged pressure with the driving force of a
damped harmonic oscillator, we have

Mg + Di + Do) + Ky = p, 20— D0 27X
x + by + 7x

The parameters M, K, D, and D, describe the mass,
restitution constant, and coefficients of a nonlinear dis-
sipation—all per unit area. The nonlinear dissipation term
(x)3 is introduced ad hoc so that the variable x can take
values only between precise boundaries, mimicking colli-
sions [15].

In this model, we make the assumption that the bird
controls vocalizations through the bronchial pressure P,
and the labial elasticity K. We assume that the elasticity
term corresponds to the concerted activity of one or more
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syringeal muscles which change the radial stiffness of the
labia. Presumably, this term can be related to the activity
of the muscles most correlated with changes in the funda-
mental frequency of the sound [16]. In what follows, we
refer to this term as tension.

The behavior of the system for different parameters
of pressure and tension is displayed in Fig. 2, where the
left boundary of the shaded region indicates the critical
values at which self-oscillations are induced. As the pres-
sure Pj is increased, the equilibrium state loses its sta-
bility in a Hopf bifurcation and energy is transferred into
the labia (there is an effective negative dissipation). Near
the boundary, the oscillations have very little spectral con-
tent. As pressure is increased to points deeper in the region
of oscillation, spectral content of the waveform increases
monotonically. Given an estimation of physical parameters
consistent with experimental measurements (see values in
the caption of Fig. 2), we find that the simulations pro-
duced by the model have a frequency range and spectral
content comparable to natural vocalizations.

The final feature of the model is the filtering of the
sound produced by the oscillations through the acoustic
properties of the vocal tract [17]. The filter was con-
structed by approximating the trachea and beak by two
tubes of lengths L, L, and areas A; and A,. The in-
put pressure P; (proportional to the time derivative of the
flow at the base of the trachea) generates a wave which
impinges on the boundary between the two tubes and is
partially reflected back towards the trachea and partially
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FIG. 2. [Illustration of sound production as a function of P,

and K. The left boundary of the shaded region indicates the criti-
cal values of pressure and tension at which self-oscillations are
induced. The dark bands in this figure are numerically calculated
contours of isofundamental frequency. Higher spectral content
is schematically indicated by darker shading. (No vocal tract fil-
tering is applied.) M = 0.005 g/cm?, D = 5.0 dyne sec/cm?,
D> = 0.01 dynesec®/cm®, 7 = 0.00015 sec, by = 0.04 cm,
and ap = 0.02 cm. With these, and P, ranging from 0 to
3 kPa (as experimentally observed), and K from 0 to 8 N/cm?,
the model generates frequencies within canary range, and
with oscillations in the range of 0 to 250 wm, consistent with
experimental evidence [10,13].
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transmitted to the second tube. The proportion of sound
energy reflected at the junction is defined by a ratio of ar-
eas: rip = (A1 — Ay)/(A1 + A3), and the portion of the
sound energy transmitted through the junction is simply
ti» = 1 — r;5. At the interface between the second tube
and the atmosphere, the wave is again partially reflected
and partially transmitted. Calling a(r) [by(¢)] the forward
[backward] wave in the first tube and b¢(7) [c;(t)] the for-
ward [backward] wave in the second tube, the equations
accounting for the boundary conditions are [18]

a(t) = Pi(t) + bp(t — 71), &)
bp(t) = ripa(t — 1) + tipep(t — ), (6)
bp(t) = tipa(t — 7)) + rigcp(t — m), @)

cp(t) = abs(t — ), (8)

where a accounts for the reflection coefficient of the inter-
face between the third tube and the atmosphere (no losses
being @« = —1), and the time 7; is the time it takes a sound
wave to travel L;. The aperture of the beak alters frequency
content of the sound in a manner similar to that observed
experimentally [19,20]. For simplicity, in each simulation
illustrated in this Letter, beak aperture was fixed.

Given a physically based model with few parameters,
what kind of control of P, and K might the bird employ
to generate the elements of its song? The oscillations that
are established in a typical vocalization are in the order
of 1 or 2 kHz while a syllable duration is between 10
and 300 ms. With this separation of time scales, if the
paths in parameter space are swept slowly, at each time ¢*
the system will behave basically as expected in a steady
condition with P,(¢*) = P, and K(t*) = K*. Given the
simplicity of the parameter space defined in Fig. 2, this
implies that the time course of K will essentially trace
out the time course of the fundamental frequency of the
syllable. Pressure will control not only sound amplitude
but also the relative strength of the higher harmonics.

For example, an upsweep syllable like the second one
displayed in Fig. 3 requires that the control trajectory begin
at a point of low pressure and tension and enter the region
of oscillation pictured in Fig. 2 by increasing pressure.
While inside the region of oscillation, tension must be
incremented to produce the upsweep in frequency. Finally,
at a position of high K, the pressure must be reduced to end
the vocalization by crossing out of the region of oscillation.
In accord with this simple example, we found that many
canary syllables could be approximated by excursions as
simple as harmonic oscillations of pressure and tension.
Specifically, we generated elliptical excursions in pressure
and tension which had the following form:

P, = P, + Acos[¢(1) + ¢i], )
K = K, + Bcos[¢(t) + ¢;]. (10)

For the figures in this Letter, the parametrization of
time is either linear or else involves a slight slowing for
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FIG. 3. Three natural syllables, three artificial syllables, and
their corresponding control trajectories. The elements are illus-
trated in time-frequency format, which was computed through
sliding, overlapped Fourier transforms. (Pixel grey level repre-
sents the power of sound on a logarithmic scale.) Parameters are
drawn with respect to Fig. 2. Arrows indicate the direction of
traversal over the curve. In each case, the trajectory begins at the
minimum pressure value and traverse the ellipse in a counter-
clockwise direction. As discussed in the text, the parametrization
of time in each ellipse is chosen to cause a slowing of traversal
rate near the point of maximum pressure. For each syllable, the
vocal tract filter has the following parameters: L; = 3.0 cm,
L, =10cm, A; = 0.15cm, A, = 0.4 cm, and o« = 0.8. This
filter leads to a transient emphasis of the power of the second
and third harmonics as indicated by the arrows. A further point
can be illustrated with this figure. For fast syllables, sound pro-
duction at a particular point P, and K is not equivalent to the
steady state sound production. Were it equivalent, syllable one
would be almost symmetric in time. In effect, there is some
overlap between the time scale of equilibration of the oscillation
and the time scale of the fastest syllables.

P

high pressure. [q.b(t) = ¢, or q}b(t) ~ 1 — elo-dP/o?
for constants ¢, and o.] We want to emphasize that this
parametrization of time is the same for both pressure and
tension. This means that the time scale and the complexity
of the two control parameters are equivalent. In this form,
an ellipse in the space of pressure and tension characterizes
the identity of each syllable. Figure 3 illustrates the simi-
larity between three elliptical control trajectories and three
notes chosen from a single bird’s song. For this figure, the
fitting procedure was qualitative in nature. The range of K
could be estimated from the frequency contours of Fig. 2,
and the phase and amplitude of the ellipse were chosen to
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FIG. 4. Synthetic signals generated by slow modulations of
pressure and tension. (P;, and K are taken from a brief sample of
the positions of two identical, spring-coupled pendulums subject
to a harmonic rescaling of time. P, ranges between 0 and 2 kPa.
K ranges between 0 and 7 N/cm?.) On the bottom of the figure,
a consecutive sequence of syllables from natural canary song is
included for comparison with the synthetic signals.
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reproduce the qualitative shape of the sonogram. Work is
in progress to build an algorithmic fitting procedure.

The elliptical paths in parameter space described above
are characteristic of the solutions of a wide range of
coupled oscillators. This suggests that the structure of
some canary songs, determined by the ordering of a
sequence of syllables, may be modeled by the slow dy-
namics of changing phase relationships in the oscillations
controlling P, and K. To illustrate this hypothesis, Fig. 4
demonstrates the response of the model to parameter oscil-
lations characterized by two oscillators whose frequency
and relative phase are slowly changing. The resulting
sequence of vocalizations demonstrates elements and
transitions qualitatively similar to a sequence of syllables
measured experimentally. Specifically, the starts, stops,
and pauses between syllables, as well as variation in pitch
and timbre, are reproduced by the simple oscillations of
P and K.

In this work we found that the spectral and temporal
diversity of many canary vocalizations can be modeled by
the response of a nonlinear equation to simple forcing func-
tions. One particular implication of our model is that the
control of syringeal tension does not need to be any more
detailed than the recorded pressure in a particular air sac
which is known to be smooth for most canary syllables
[21,22]. For many songs, simple non-self-intersecting
cycles in the P, and K parameter space were able to re-
produce the data. These cycles could be approximated by
ellipses, which ultimately suggests that a fundamental vari-
able to be controlled in order to build a song is the phase
difference between simple oscillations in bronchial pres-
sure and vocal fold tension.
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