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Al. L. Efros,1 E. I. Rashba,2,* and M. Rosen1

1Naval Research Laboratory, Nanostructure Optics Section, Washington, D.C. 20375
2Department of Physics, MIT, Cambridge, Massachusetts 02139

(Received 24 April 2001; published 29 October 2001)

A theory of spin injection from a ferromagnetic source into a semiconductor through a paramagnetic
ion-doped nanocrystal is developed. Spin-polarized current from the source polarizes the ion; the polar-
ized ion, in turn, controls the spin polarization of the current flowing through the nanocrystal. Depending
on voltage, the ion can either enhance the injection coefficient by several times or suppress it. Large ion
spins produce stronger enhancement of spin injection.
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The concept of a spin field effect transistor (spin FET),
initiated by Datta and Das [1] and based on the electric
field controlled precession of electron spins driven by
the spin-orbit interaction [2], created a wide and active
interest in spin injection from spin selective contacts into
semiconductor microstructures. A growing body of work
has resulted in the new field of spintronics [3], based on
the spin properties of electrons and holes rather than on
their properties as charge carriers, as is the case in tradi-
tional semiconductor electronics. The recent discovery of
long spin relaxation times [4,5] (greater than a hundred
nanoseconds) has stimulated additional interest in this
field. However, developing effective room temperature
�TR � spin sources remains a critical requirement for
spin-polarized transport. The TR spin injection coefficient
from a ferromagnetic metal (FM) to a semiconductor
(SC) is currently only about 1% [6,7]. Impressively large
spin injection coefficients of the order of 50%–90% have
been achieved from a semimagnetic SC, but only for
temperatures T � 4 K and in an external magnetic field
[8–10]. Mechanisms controlling spin injection and the
spin valve effect in the ballistic and diffusion regimes have
been discussed in a number of papers [11–14]. It has been
argued that a tunnel contact at the FM-SC interface should
increase spin injection, at least in the diffusive regime
[13], and available experimental data seem to support
this conclusion [15–17]. Several types of spin filtering
contacts have been proposed [18]. Since a spin FET is an
interference device and electron spin precession driven by
spin-orbit coupling is momentum dependent [1],
monochromaticity of the injected electron beam is
another critical requirement for a spin emitter.

In this Letter, we propose using a semiconductor
nanocrystal (or a small quantum dot) doped by a para-
magnetic ion as a connector between the FM and the SC,
and develop a theory of spin injection through such a
device. This system (i) controls the spin injection in a way
quite similar to that of a tunnel contact, (ii) is completely
controlled by the voltage across (or current through) the
dot, and does not require an external magnetic field,
(iii) results in an enhancement of the spin injection
coefficient with increasing current, and (iv) is a nearly
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monochromatic source of spin-polarized electrons. Hav-
ing in mind the strong dependence of the ion polarization
on the current, we also envisage using such nanocrystals
as nonlinear elements (mixers) working at the ultimate
limit of miniaturization of a single paramagnetic ion [19].

The underlying physical picture is as follows. A tunnel
current via the nanocrystal goes through only one of the
two electron-ion spin levels that are formed by the electron-
ion exchange interaction. Spin-polarized electrons, in-
jected from the FM into the nanocrystal, align the spin
Ŝ of the ion [20]. When the ion spin is aligned with the
electron spin, the dot acts as a filter either enhancing or
suppressing the spin-polarized current. The effect is most
pronounced for large S.

High quality semiconductor nanocrystals of controlled
diameter d (down to 20 Å) are fabricated by the colloidal
chemistry technique [21,22]. Strong carrier confinement
results (i) in level spacings and Coulomb blockade energies
that can exceed TR by an order of magnitude (as revealed
in tunneling experiments with CdSe [23,24] and InAs [25]
nanocrystals) and (ii) in the dramatic enhancement of the
electron-ion exchange interaction, which causes a splitting
of the electron (and hole) spin sublevels in doped dots [26].
The doping of nanocrystals is a challenging task [26,27],
and only recently have the first high-quality ZnSe:Mn21

nanocrystals with d � 57 Å been fabricated [28]. They
show an average exchange splitting of 28 meV, which is
comparable to TR .

To make the basic physics clear, we choose a simple
model of the strong Coulomb blockade and sequential tun-
neling in the master equation approximation [29] and as-
sume that a single paramagnetic ion with spin S resides at
the center of a spherical dot. Electrons can populate the
1 s state of the dot; because of the large Coulomb block-
ade energy, the population number can take on only the
values n � 0 and 1. For n � 1, the exchange interaction
Ĥex � 2bex�ŝe ? Ŝ� between the electron and ion forms
two sublevels (l � 61� with total spin J � S 1 l�2,
where ŝe and Ŝ are the electron and ion spins. The sub-
levels are separated by an energy Eex � jbexj �S 1 1�2�.
Two ions, Mn21 and Gd31, with L � 0 electron configura-
tions and spin S � 5�2 and 7�2, respectively, can be
© 2001 The American Physical Society 206601-1
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considered as candidate ions. For Mn21 doped dots, the
J � 3 level is the lowest one (in accordance with Hund’s
first rule). The strength of the exchange interaction, bex, is
proportional to the square of the electron wave function at
the paramagnetic ion, and, for a small dot, increases as d23

[26]. For CdSe:Mn21 dots with d � 25 Å, an estimate
based on the data of Ref. [28] results in Eex � 250 meV.

Therefore, we consider tunneling through states belong-
ing only to a single component of the J � S 6 1�2 dou-
blet with total spin projections t � 2J, . . . , J. Electron
populations nt of these states are related to the mean popu-
lation n̄ of the dot as n̄ �

P
t nt . In the absence of the

electron, spin projections are s � 2S, . . . , S and popula-
tion probabilities of these states are ns. The normalization
condition is

n̄ 1 n̄ � 1, n̄ �
X
t

nt , n̄ �
X
s

ns . (1)

In our model, the exchange interaction between the elec-
tron residing in the dot and the FM contacts is neglected.
In the absence of a current, all population numbers nt, as
well as ns , are equal, and the magnetization of the dot
is zero both in the populated and the unpopulated states,
Mp ~

P
t tnt � 0, Mnp ~

P
s sns � 0. Therefore, the

magnetization of the dot found in what follows arises en-
tirely from the current I passing through it.

Spin-polarized currents Ia passing through the dot are
controlled by the conductivities g

m
a of the left and right

contacts, m � L, R. They depend on the electron spin pro-
jections a � 61�2. We consider the g

m
a as phenomeno-

logical parameters which characterize the spin selectivity
of each contact [30]. Spin-polarized current to (or from) a
specific quantum state of the dot can be found by mul-
tiplying g

m
a by the square of the Clebsch-Gordan (CG)

coefficient �asjJt� and by the Fermi functions fm�E� �
f�E 2 zm� [or 1 2 fm�E�], where E is the energy of the
electron level in the dot and the zm are the Fermi levels in
the respective leads. The coefficients Pa �

P
m g

m
a fm�E�

and Qa �
P

m g
m
a 	1 2 fm�E�
 characterize the total in-

and out-going spin-polarized current.
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Under steady state conditions, the balance equation,
Pans � Qant, t � a 1 s , (2)

ensures equal rates of the formation of the populated t

state from the unpopulated s state plus an a electron, and
for the decay of the t state through the same channel. CG
coefficients do not enter into this set of equations. The
solution of this system of equations is

nt�n0 � k
t
1�2, ns�n0 � �Qa�Pa�k2a�s1a�

a . (3)

This satisfies the equation ntn2t � n2
0. Here,

ka � PaQ2a�P2aQa, k2a � k21
a . (4)

Equation (3) allows one to find the magnetization MJ of
the populated state [31] in terms of the Brillouin function
BJ�x�, MJ �

P
t tnt�

P
t nt � BJ�lnk1�2�, where

BJ�x� � �J 1 1�2� coth	�J 1 1�2�x
 2 coth�x�2��2 .

For Jx ø 1, BJ �x� � J�J 1 1�x�3, and it saturates to
BJ�x� � J for x * 2. One sees that MJ is completely
determined by k1�2, has the sign of �k1�2 2 1�, and does
not depend on the CG coefficients. In the theory of para-
magnetic ions, the argument of the Brillouin function is
x � m�H�kBT , where m� is the magnetic moment of an
ion and H is an external magnetic field. Therefore, lnk1�2
plays the role of the magnetic energy measured in units of
kBT . The ion is not polarized if k1�2 � 1. This is the case
for I � 0, and also, for arbitrary I, if both leads have equal
spin selectivities, g

L
1�2�g

L
21�2 � g

R
1�2�g

R
21�2. MJ reaches

its maximum for the case of opposite magnetization of the
two leads.

Spin-polarized currents Ia are given by

Ia �
1
2

X
st

	�gL
afL 2 gR

a fR� �ns 1 nt�

2 �gL
a 2 gR

a �nt
 �asjJt�2. (5)

Equation (5) is symmetric in L and R and is valid if spin
relaxation in the dot is neglected. Using Eq. (2), the rela-
tion Pa 1 Qa � gL

a 1 gR
a , and a similar relation for Pa ,

one can prove the identity,
�gL
afL 2 gR

a fR� �ns 1 ns1a� 2 �gL
a 2 gR

a �ns1a � 2gL
agR

a ns� fL 2 fR��Qa . (6)
Substituting Eqs. (3) and (6) into Eq. (5) results in

Ia � n0
gL

agR
a

Pa

� fL 2 fR�
X
st

k2a�s1a�
a �as j Jt�2. (7)

Hence, the currents Ia increase with the electrochemical
potential drop between the leads, and the spin polarization
of the current depends on the total spin J of the state
participating in the injection. Using explicit expressions
for the CG coefficients, �a, s jJt�2 � 1�2 1 lat��S 1

1�2�, we find that the a polarized current passing through
the l component of the exchange split level is

I�l�
a � n0� fL 2 fR�

gL
agR

a

2Pa

JX
m�2J

km
a

µ
1 1

lm
S 1 1�2

∂
,

(8)
where m � 2at is a new summation index,
2J # m # J.

It is a remarkable property of Eq. (8) that it includes
exactly the same sums which enter in the definition of the
magnetization MJ . Because of this fact, the currents I�l�

a

can be expressed in terms of MJ :

I�l�
a � n̄� fL 2 fR�

gL
agR

a

2Pa

∑
1 1

2alMJ

S 1 1�2

∏
. (9)

This shows that the effect of the paramagnetic ion on the
spin-polarized currents I�l�

a through the dot is completely
described in terms of the magnetization of the dot in the
populated state, MJ .

Equation (9) permits one to find the dependence of the
spin polarization ratio,G�l� � �I�l�

1�2 2 I
�l�
21�2���I�l�

1�2 1 I
�l�
21�2�,

on MJ . Having in mind applications to spin injection from
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FM to SC, we take the right lead to be spin nonpolarized,
and introduce the notation g

L
61�2 � gL�1 6 D��2, gR

a �
gR�2, where D describes the spin selectivity of the contact
between the FM and the dot. Using the definition Pa �
gL

afL 1 gR
a fR , one finds, after some algebra,

G�l��MJ � � G0
1 1 lG

21
0 MJ��S 1 1�2�

1 1 lG0MJ��S 1 1�2�
, (10)

G0 � D�	1 1 �1 2 D2�gLfL�gRfR
 . (11)

Equations (10) and (11) relate G�l� to D. Parameter G0
does not depend on the paramagnetic center. It describes
the spin selectivity of the dot for small currents when
MJ ø J (also for tunneling through the J � 0 level of
a dot with S � 1�2).

Equations (10) and (11) are the principal result of the
paper. Below, we discuss the insight they provide on the
spin transport for the case that the voltages on the source,
gate, and drain can be varied independently, i.e., fL and fR

are independent variables controlling MJ , while D does not
depend on the voltage.

We see from Eqs. (10) and (11) that, for small volt-
age, when fL ! fR and MJ�J ! 0, the polarization ratio
equals G0 for both values of l, and G0 is always less than
D. Therefore, an unpolarized ion suppresses spin injection.
The ratio G0�D depends on the ratio of the conductivities of
the contacts, gL�gR, and, when the conductivity of the FM
contact is much larger than that of the SC, gL�gR ¿ 1, the
suppression is strong. However, MJ grows quickly with in-
creasing voltage (see Fig. 1a), while G0 decreases slowly.
When MJ becomes larger than G0�S 1 1�2�, the spin in-
jection blockade breaks down and the polarization ratio ac-
quires its normal magnitude G�l� � D. The stronger the
suppression of G0, the narrower is the range of voltages in
which the “spin injection blockade” occurs. In this region
of the parameters, the dot behaves as a highly nonlinear
spin emitter.

In Fig. 1 the dependence of the magnetization and G�l�

on voltage is shown for a Mn21 doped dot. With increasing
voltage, G�1� and G�2� change in opposite ways. If k1�2 .

1, the magnetization MJ and G�1� increase with voltage,
while G�2� decreases; G�2� can even change sign (see
Fig. 1b). The region of enhanced spin injection, G�1� .

D, lies to the right of the bold solid line described by

MJ��S 1 1�2� � D��1 1 gRfR�gLfL� . (12)

The parameter range gL � gR and fL ¿ fR is optimal
for spin injection enhancement. Under these conditions
G0 ø 1, and Eq. (10) takes the form

G�l� � lMJ��S 1 1�2� . (13)

It is remarkable that G0 drops out from this equation
and, therefore, G�l� depends on D only through MJ . For
D ø 1�2J, expansion of BJ�x� for small x yields G�l� �
2lJ�J 1 1�D�3�S 1 1�2�. Thus, for small D, the en-
hancement factor is G�1��D � 2�J 1 1��3, which is 8�3
206601-3
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FIG. 1. Dependence of the magnetization M3 (a) and the spin
polarization ratio G�6� (b) on fL 2 fR , monitoring the voltage
drop between the leads, for different values of D. Calculations
were done for a Mn21 doped nanocrystal. Dashed and solid
lines in (b) describe G�1� and G�2� for J � 3 and J � 2 states,
respectively. The solid bold line in (b), G�1� � D, separates the
regions of enhanced (to the right) and suppressed (to the left)
spin injection. Note the similarity in shape of the MJ and G�1�

curves for fL 2 fR * 0.3, in agreement with Eq. (13).

for Mn21. For larger D, D * 1�2J, the magnetization
saturates; G�l� � 1 and is independent of D. In both cases,
large J enhances the polarization ratio. The dependence
of G�l� on D, for a Mn21 doped dot, is shown in Fig. 2.

The spin polarization ratios for currents flowing through
the two respective levels of the exchange doublet exactly
coincide as fL 2 fR ! 0; they are equal in magnitude but
opposite in sign as fL ! 1, fR ! 0.

Heretofore, we have neglected spin relaxation, which
suppresses the spin alignment of the ion. There are two
basic spin relaxation times, Tn and Tn, for a populated
and unpopulated dot, respectively. Equations that include
relaxation are more complex than Eq. (2). However, in
most cases the criteria, gpTn ¿ 1, gnpTn ¿ 1, ensure
that spin relaxation has only a minor effect on the mag-
netization of the dot. Here, gp � Q21

a and gnp � P21
a

are decay rates of the populated and unpopulated states,
respectively. For time dependent voltages, the dynam-
ics of MJ and G�l� are controlled by the same relaxa-
tion times. Typically, 109 s21 & gL,R & 1014 s21 [25].
The room temperature spin relaxation time Tn of Mn21

in bulk ZnSe is 100 1000 ns [32], and should be much
longer in small dots. For undoped CdSe dots, the spin
relaxation time, ts, measured at TR was �0.4 ns [33].
206601-3
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FIG. 2. Dependence of the spin polarization ratio G�6� on D
for several values of fL and fR calculated for a Mn21 doped
nanocrystal and gL � gR . Dashed and solid lines describe G�1�

and G�2� for J � 3 and J � 2 states, respectively. The dotted
line, G�1� � D, separates the regions of enhanced (above the
line) and suppressed (below the line) spin injection.

Extrapolation to TR of the data of Ref. [34], taken for exci-
tons in InAs�GaAs dots, results in ts � 1 ns. Therefore,
spin relaxation can usually be neglected.

In conclusion, we have shown that spin injection from
a FM electrode into a nanocrystal aligns the spin of a
paramagnetic ion and that this strongly influences the spin
polarization of the current. For large ion spin S, the ion can
enhance spin injection by a factor of about 3, and yields
nearly 100% polarized current even when the FM source is
not 100% polarized. We expect this effect to be observable
at room temperature for small nanocrystals and quantum
dots with a large exchange splitting.
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