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We study magnetic-field-induced three-dimensional ordering transitions in low-dimensional quantum
spin liquids, such as weakly coupled, antiferromagnetic spin-1�2 Heisenberg dimers and ladders. Using
stochastic series expansion quantum Monte Carlo simulations, we obtain the critical scaling exponents
which dictate the power-law dependence of the transition temperature on the magnetic field. These are
compared with recent experiments on candidate materials and with predictions for the Bose-Einstein
condensation of magnons. The critical exponents deviate from isotropic mean-field theory and exhibit
different scaling behavior at the lower and upper critical magnetic fields.
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Many low-dimensional quantum spin liquids, such as
antiferromagnetic Heisenberg spin ladders, have a non-
magnetic valence-bond ground state with a finite energy
gap to the lowest band of triplet excitations. This spin gap
can be suppressed by an applied magnetic field. Increas-
ing the external field beyond a critical value hc1 leads to
partial spin polarization and incommensurate, gapless ex-
citations. A second transition occurs at a higher critical
field, hc2, above which the system becomes fully polar-
ized. It has been suggested that in the partially polar-
ized phase, hc1 , h , hc2, weak couplings between the
low-dimensional subsystems induce a three-dimensional
(3D) condensation of magnetic excitations at low tempera-
tures [1,2].

Indications of such 3D ordering transitions induced by
external magnetic fields were observed by high-field nu-
clear magnetic resonance and inelastic neutron scatter-
ing measurements on the quantum spin liquids TlCuCl3
[3,4] and Cu2�C5H12N2�2Cl4 [5–8]. The crystal struc-
ture of TlCuCl3 suggests that this compound consists of
weakly coupled Cu2Cl6 dimers, involving two neighbor-
ing spin-1�2 Cu21 ions in its b-c plane [9,10]. A small
spin gap of D � 7.5 K was determined from measure-
ments of the magnetic susceptibility [3,11]. On the other
hand, Cu2�C5H12N2�2Cl4 is generally viewed as a com-
pound of weakly coupled two-leg ladders with intraladder
exchange constants J� � 13.2 K, Jk � 2.5 K, and a spin
gap D � 10.5 K [5]. However, a very recent study has
concluded that this material consists of frustrated planar
networks of dimers [12].

We may further expect field-induced 3D ordering phe-
nomena to occur in �C5H12N�2CuBr4 [13]. This compound
is believed to consist of weakly coupled two-leg ladders
with a strong rung coupling, J� � 13.3 K, between adja-
cent CuBr4 tetrahedra, and a weaker coupling, Jk � 3.8 K,
along the legs of the ladders [14]. Its spin gap was ob-
served to be D � 9.5 K.

Whatever the effective dimensionalities of these
compounds may turn out to be [d � 0 for TlCuCl3,
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d � 1 or d � 2 for Cu2�C5H12N2�2Cl4, and d � 1 for
�C5H12N�2CuBr4], they share the essential common
feature of a spin-liquid ground state and a small but finite
spin gap that can be overcome by presently accessible
magnetic fields.

From the theoretical side, it has been proposed that the
observed field-induced 3D magnetic ordering transition in
these systems can be interpreted as a Bose-Einstein con-
densation (BEC) of magnons, resulting in a staggered,
transverse magnetic order [1,15–17]. This class of quan-
tum phase transition is characterized by a critical exponent
a, which relates the ordering temperature Tc to the applied
magnetic field according to

Tc�h� ~ jh 2 hcj
1�a. (1)

The exact determination of this power-law dependence
from experimental data turns out to be somewhat delicate,
because it requires simultaneous fitting of the critical
field and the scaling exponent. Furthermore, the number
of data points tends to be sparse in the scaling regime
around �hc, Tc�. Nevertheless, the experimentally de-
duced exponents, a � 2.0 for TlCuCl3 and a � 1.5
for Cu2�C5H12N2�2Cl4, appear to be within the general
range of the value aIBEC � 3�2, expected from isotropic
Bose-Einstein Hartree-Fock theory [1,15,16]. However,
material-specific details such as spin-phonon coupling
and magnetic frustration in these compounds are likely to
influence the precise values of the scaling exponents.

In this Letter, we address the fundamental question of
obtaining these critical scaling properties directly from
microscopic models of weakly coupled low-dimensional
quantum spin systems. We apply the recently developed
stochastic series expansion quantum Monte Carlo (QMC)
technique [18] to the 3D antiferromagnetic spin-1�2
Heisenberg model with spatially anisotropic exchange
couplings,
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where h denotes the applied magnetic field. The relative
strengths of the nearest-neighbor exchange coupling con-
stants Jij are illustrated in Fig. 1, in which planar sec-
tions of two clusters with different configurations of Jij

are shown. Figure 1(a) illustrates an ensemble of weakly
coupled dimers oriented along the x direction, a configu-
ration resembling the minimal effective magnetic struc-
ture of TlCuCl3. Figure 1(b) shows a quasi-1D array of
weakly coupled two-leg Heisenberg ladders oriented along
the y direction, as may be realized in �C5H12N�2CuBr4 or
Cu2�C5H12N2�2Cl4.

The numerical algorithm involves expansions of the par-
tition function in inverse temperature, uses local and global
system updates, and is significantly more efficient than
conventional QMC schemes. In this work we study cu-
bic lattices with up to 10 3 10 3 10 quantum spins down
to very low temperatures, by which is meant less than 1%
of the exchange coupling strength J which sets the scale
of the problem. Moreover, the stochastic series expansion
QMC method can handle external magnetic fields of any
strength without the problems common to world line QMC
techniques, such as the QMC loop algorithm.

In Fig. 2(a), the low-temperature regime of the uniform
magnetization is shown for the system of weakly coupled
dimers depicted in Fig. 1(a) at various magnetic fields
within the partially polarized regime, hc1 , h , hc2. The
anisotropy of the exchange coupling constants, J0�J �
1�15, was chosen according to estimates for TlCuCl3.
Here J is the strong intradimer and J 0 is the weak inter-
dimer coupling. In this case, the observed critical fields are
well approximated by perturbation theory about the limit
of noninteracting dimers, giving hc1 � J 2 5J 0�2 and
hc2 � J 1 5J 0. At ultralow temperatures on the order of
J 0, the magnetization curves of the weakly coupled dimers
(solid lines) have a maximum if hm , h , hc2 and a mini-
mum if hc1 , h , hm, where hm � �hc1 1 hc2��2, indi-
cating the onset of a magnetic-field-induced 3D ordering.
This feature, emphasized by large filled circles, is absent
in the magnetization curves for the noninteracting limit
(J 0 � 0), denoted by the dashed lines. While effects of the

(b)(a)
FIG. 1. Layers of anisotropically coupled quantum spins:
(a) Weakly coupled dimers and (b) weakly coupled ladders.
The strength of the exchange coupling constants is indicated
by the thickness of the lines. The 3D interlayer couplings (not
shown in the figure) have the same strength as the weakest
links (dashed lines) within the planes.
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weak interdimer couplings are clearly negligible at higher
temperatures, their relevance at low temperatures is seen
in the departure of the solid lines from the dashed lines. In
contrast to the mean-field theory of weakly coupled dimers
[19], the magnetization is observed to be strongly tem-
perature dependent below the ordering temperature Tc, as
shown in Figs. 2(b) and 2(c). On the other hand, the 3D
behavior is in qualitative agreement with the recently pro-
posed BEC description of this ordering transition [15].

The dependence of Tc on the applied magnetic field
can be extracted from the locus of the extrema in m�T �
which were found to be robust to finite size effects for
the system sizes considered here [20]. The resulting phase
diagram is plotted in Fig. 3 for the ensemble of weakly
coupled dimers. As expected from Eq. (1), the transition
temperature exhibits a power-law dependence in the vicin-
ity of hc1 and hc2. Our best fits, shown in the insets of
Fig. 3, yield a � 2.7 6 0.2 for the lower-field transition
and a � 2.3 6 0.2 in the vicinity of hc2. These criti-
cal exponents differ significantly from the value obtained
by standard, isotropic Bose-Einstein Hartree-Fock theory,
aIBEC � 3�2. It was previously pointed out that some
of this deviation may be attributed to shortcomings of the
Hartree-Fock description in the critical regions [15].

Another important point is that the dispersion of the spin
triplet band is strongly anisotropic [21]. For the case of
linearly aligned, weakly coupled dimers the dominant fea-
ture in the triplet excitation spectrum is a parabolic bonding
band along the strong-coupling direction which becomes
populated when the magnetic field is raised beyond hc1
[22]. Along the weak-coupling directions the triplet
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FIG. 2. (a) Temperature dependence of the uniform magnetiza-
tion in the system of weakly coupled dimers shown in Fig. 1(a).
The coupling anisotropy is J 0�J � 1�15, and the magnetic fields
are h�J � 0.80, 0.86, 0.90, 0.97, 1.08, 1.17, 1.23, 1.27, 1.32,
and 1.37. Extrema in m�T� indicate the onset of 3D order-
ing and are denoted by enlarged filled circles. Results for the
noninteracting (J 0�J � 0) limit are plotted with dashed lines.
(b) Low-temperature regime of m�T � at h � 1.27J and (c) at
h � 0.9J .
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FIG. 3. Phase diagram of the magnetic-field-induced ordering
transition in a system of weakly coupled dimers. The scaling
exponents in the vicinity of the lower and upper critical fields
are extracted from double-logarithmic plots of Tc�h�, shown in
the insets.

excitation spectrum is linear in this regime. Following the
BEC Hartree-Fock treatment of [15], a critical exponent
a � 5�2 is obtained for this case [23]. This anisotropic
BEC Hartree-Fock exponent is in better agreement with
the QMC simulations than aIBEC � 3�2.

On the other hand, measurements of the lower-field criti-
cal exponent in TlCuCl3 give a � 2.0 [4] and a � 2.2
[15]. This suggests that the generic Heisenberg Hamilto-
nian which we have studied is not sufficient to accurately
model the critical properties of this compound. Reasons
for this discrepancy may be found in (i) the much more
complex band structure of the spin-triplet excitations in
the real material [21,24], (ii) magnetic frustration effects,
and (iii) coupling to phonon degrees of freedom.

Let us now turn to the system of weakly coupled two-
leg ladders depicted in Fig. 1(b). For the coupling con-
stants chosen in Figs. 4 and 5, the critical magnetic fields
are hc1 � 0.61J and hc2 � 1.86J. It has recently been
pointed out that this system exhibits extrema in m�T � even
in the complete absence of interladder couplings [25]. We
can confirm this observation with our simulations of the
uniform magnetization, as shown in Figs. 4(a) and 4(c).
At magnetic fields slightly above hc1 minima occur at low
temperatures, whereas maxima are observed at larger mag-
netic fields close to hc2, indicated by open arrows in Fig. 4.
These features indicate the crossover into low-temperature
Luttinger liquid behavior in the partially polarized regime,
hc1 , h , hc2 [25]. When the weak interladder couplings
are switched on, a second feature, marked by the filled ar-
rows in Figs. 4(b) and 4(d), occurs at still lower tempera-
tures. This is the 3D magnetic ordering transition, also
manifested as a change of slope in the mean free energy,
as shown in the insets. Measurements of the magnetic
206407-3
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FIG. 4. Low-temperature regime of the uniform magnetization
in ladder systems. (a),(c) Isolated two-leg ladders. (b),(d) Sys-
tem of weakly coupled ladders shown in Fig. 1(b). The cou-
pling constants are J � J�, Jk � J�3, J 0 � 0 for (a) and (c),
and J 0 � J�15 for (b) and (d). The applied magnetic fields are
h � 0.83J for (a) and (b) and h � 1.5J for (c) and (d). The
temperature dependence of the mean free energy is shown in the
insets.

specific heat in Cu2�C5H12N2�2Cl4 indeed show such 3D
ordering features at temperatures below the onset of quan-
tum critical behavior [6].

A rich magnetic phase diagram, shown in Fig. 5, can be
constructed from these magnetization response functions
and shares some of the essential features reported by
experiments on �C5H12N�2CuBr4 and Cu2�C5H12N2�2Cl4.
At high temperatures (not shown here), the system is
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FIG. 5. Magnetic phase diagram of weakly coupled ladders.
The upper lines indicate the crossover into a finite-temperature
Luttinger liquid regime, also present in isolated two-leg ladders.
The lower line marks the magnetic-field-induced 3D ordering
transition. The scaling exponents in the vicinity of the lower
and upper critical fields are extracted from double-logarithmic
plots of Tc�h�, shown in the insets.
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effectively zero dimensional, with a paramagnetic Curie-
law temperature dependence of the magnetic susceptibility.
Lowering the temperature, there is a low-field disordered
spin liquid regime (h , hm) and a high-field spin-
polarized phase (h . hm), where hm � �hc1 1 hc2��2
separates these two regions. The onset of finite-
temperature Luttinger liquid behavior is found in the
partially spin-polarized regime, hc1 , h , hc2, at tem-
peratures below 0.13J for Jk � J�3 [26]. The effective
dimensionality of this region is d � 1. Finally, 3D
ordering occurs at still lower temperatures, as indicated
by the lowest transition line in Fig. 5. The scaling expo-
nents extracted from fits of Tc�hc� to the power law in
Eq. (1) are a � 3.1 6 0.2 at the lower critical field and
a � 1.8 6 0.2 at the upper critical field. These values are
quite different from isotropic Bose-Einstein Hartree-Fock
theory, suggesting that a successful effective theory needs
to account more accurately for the quantum dynamics of
the lower-dimensional subsystems.

In summary, we have studied the magnetic phase dia-
gram and the critical behavior in models of weakly coupled
quantum spin liquids. Using the stochastic series expan-
sion QMC method, we were able to reach sufficiently low
temperatures such that magnetic-field-induced 3D ordering
could be observed. The scaling exponents depend strongly
on the dimensionality and on the quantum dynamics of the
subsystems, Heisenberg dimers and ladders, which reflect
the strongly anisotropic dispersion of the triplet excitation
bands. While this study has concentrated on the fundamen-
tal features of generic model Hamiltonians, much more de-
tailed models are clearly needed to account for the specific
scaling properties observed in real materials.
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