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We use the classical mapping of quantum fluids [Phys. Rev. Lett. 84, 959 (2000)] for a study of the
uniform 2D electron gas. The “quantum temperature” Tq of the classical 2D Coulomb fluid having the
same correlation energy Ec as the quantum fluid is determined as a function of the density parameter
rs . Using this Tq , spin-dependent pair-distribution functions are determined, and an analytic fit to the
Ec is given. The Tq for 2D and 3D electron fluids is found to be approximately the same universal
function of the classical coupling constant G. The coupling G increases more rapidly with density in
2D; hence, we present a scheme for including bridge terms in the 2D hypernetted-chain method. The
Helmholtz free energies of the spin-polarized and unpolarized phases are calculated, and the existence
of a ferromagnetic phase near rs � 30 is found to be a marginal possibility.
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The past three decades have established the two-
dimensional electron gas (2DEG) as a goldmine of
new physics and novel technologies [1]. The 2DEG,
ranging from a classical to a quantum system, occurs
on liquid-He surfaces, semiconductor heterointerfaces,
and in the CuO layers of high-Tc superconductors. The
interest in the quantum Hall effect, the metal-insulator
transition, Kosterlitz-Thouless–type transitions [2], and
applications to nanotechnology and spintronics widens
its importance. The exchange-correlation energy �Exc� of
the 2DEG is important in its own right as an input to the
density-functional theory of inhomogeneous 2D systems.

The physics of the 2DEG depends crucially on the
“coupling parameter” G � (potential energy)/(kinetic
energy) arising from the Coulomb interactions. The G

for the 2DEG at T � 0 and mean density n is equal
to the mean-disk radius rs � �pn�21�2 per electron. In
the absence of a magnetic field or disorder effects, the
density parameter rs, the spin polarization z , and the
temperature T are the only relevant physical variables. A
major problem in the 2DEG is the need for a theoretical
method applicable at arbitrary values of G, z , and T .
As in the 3D electron gas (3DEG), various perturbation
methods, equations-of-motion methods, e.g., those of
Singwi et al. (STLS) [3], work for relatively weak cou-
pling, but lead to negative pair-distribution functions
(PDFs) even at moderate rs. In spite of a large effort, the
calculation of the 2DEG gij�r�, where i, j are spin species,
at arbitrary spin-polarization z , rs, and T is unsolved,
except by direct quantum simulation techniques. Such
“quantum Monte Carlo” (QMC) methods [4], as well as
Feenberg techniques [5], assume a trial wave function
c � FD, where F is a correlation factor and D is a Slater
determinant. The variational Monte Carlo method [6],
and the fixed-node Green-function Monte Carlo method
(GFMC) have been applied to the 2DEG, providing
the exchange-correlation energy, Exc�rs� at T � 0 in a
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parametrized form [6]. Finite-T systems involve excited
states as well as the ground state. While it is easy to get
good Exc�rs� at T � 0, z � 0, the same is not true for
most properties such as the PDFs, local-field corrections,
and xc energies at finite T , spin polarization z , and at
strong coupling.

Recently we presented a computationally simple, con-
ceptually novel classical method for calculating the PDFs
and other properties (e.g., static response) of the 3DEG at
arbitrary coupling, spin polarization, and temperature [7].
The method is based on identifying a “quantum tempera-
ture” Tq such that the correlation energy of a correspond-
ing classical Coulomb fluid at Tq is equal to that of the
quantum fluid at T � 0. Our only “many-body” input is a
set of values of Ec�rs� for determining Tq. Once Tq�rs� is
known, many properties inaccessible to standard methods
become readily calculable. A discussion of the T � 0 and
finite-T 3DEG was presented earlier [7,8].

A method which works in 3D does not necessarily work
in reduced dimensions. A first objective of this Letter
is to show that the same ideas apply to the challenging
problems of the 2DEG. In addition, this study reveals
previously unexpected aspects of the quantum temperature
Tq, exposes the long-range nature of the Pauli exclusion
effect in the 2D system, and provides new results for the
partially polarized 2D electron liquid. It is found to be
numerically precise enough, even at rs � 30, to selectively
favor newer QMC calculations [9]. We also examine the
stability of spin-polarized phases of the 2DEG at finite T
and sufficiently large rs.

The PDFs of the 3DEG could be accurately calculated
using the hypernetted-chain (HNC) approximation [10].
The 2D system requires that bridge-type cluster corrections
to the HNC approximation be included. A comparison
of the 2DEG and 3DEG forms of Tq�rs� reveals that the
quantum temperature is approximately a universal function
of the classical-fluid coupling constant.
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The essence of our method is to start from the quantum
mechanical g0�r� of the noninteracting problem and build
up the interacting g�r� by classical methods.

Consider a fluid of mean density n containing two spin
species with concentrations xi � ni�n. We deal with the
physical temperature T of the 2DEG, while the tempera-
ture Tcf of the classical fluid is 1�b. Since the leading
dependence of the energy on temperature is quadratic, we

assume that Tcf �
q

T 2 1 T 2
q . This is clearly valid for

T � 0 and for high T , and was justified in more detail in
Ref. [8]. In this Letter the main effort is to study the 2DEG
near T � 0 and at zero magnetic field by determining Tq.
The equations for the PDFs of a classical fluid, and the
Ornstein-Zernike (OZ) relations, are

gij�r� � exp�2bfij�r� 1 hij�r� 2 cij�r� 1 Bij�r�� ,
(1)

hij�r� � cij�r� 1 Ssns

Z
dr0 hi,s�jr 2 r0j�cs,j�r0� . (2)

Here fij�r� is the pair potential between the species i, j.
For two electrons this is just the Coulomb potential Vcou�r�.
If the spins are parallel, the Pauli principle prevents occu-
pation of the same spatial orbital. As before [7,] we in-
troduce a “Pauli potential,” P �r�. Thus fij�r� becomes
P �r�dij 1 Vcou�r�. The function h�r� � g�r� 2 1 is re-
lated to the structure factor S�k� by a Fourier transform.
The c�r� is the “direct correlation function (DCF)” of the
OZ equations. The Bij�r� in Eq. (1) is the “bridge” term
due to certain cluster interactions. If this is neglected,
Eqs. (1) and (2) form a closed set defining the HNC ap-
proximation. The HNC is sufficient for the 3DEG for the
range of rs studied previously [7]. The classical coupling
constant of the 2DEG is found to increase with rs more
rapidly than in the 3DEG. Thus, although P �r� restricts
clustering effects in the case of gii , bridge contributions
(which contain irreducible three-body and higher terms)
are found to be important for g12. The inclusion of a bridge
term into the HNC equations, usually via a “hard-sphere”
model [11], is well known in 3D problems, but is less ex-
plored for 2D systems. In this context, it is noteworthy
that Kwon et al. had to include three-body correlations in
QMC trial functions [9,12].

In the noninteracting system at temperature T , n �
n1 1 n2, xi � ni�n, the anti-k g0

12�r, T� is unity while

h0
11�r� � 2

1

n2
i

Sk1,k2 n�k1�n�k2�ei�k12k2�?r � 2�f�r��2.

Here k, r are 2D vectors and n�k� is the Fermi occupa-
tion number at the temperature T . At T � 0, f�r� �
2J1�kir��kr , where J1�x� is a Bessel function. The Pauli
exclusion potential is defined by

bP �r� � h0
11�r� 2 c0

11�r� 2 ln�g0
11�r�� , (3)

where, e.g., c0
ii�r� is the spin-k DCF of the OZ equation.

At T � 0 it may be shown that bP �r� � 22 ln�r� for
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r ! 0, bP �r� � p�rkF for r ! `, bP �k� � 24p�k2

for k ! `. Only the product bP �r� is determined. The
classical fluid “temperature” Tcf � 1�b is still undefined.
The Pauli potential is a universal function of rkF, and
limited to about a thermal wavelength lth at finite T .

The next step in the method is to use the full fij�r�,
and solve the coupled HNC and OZ equations for the bi-
nary (up and down spins) interacting fluid. The Coulomb
potential Vcou�r� for two point-charge electrons is 1�r.
However, an electron at the temperature T is localized to
within a thermal wavelength. Thus, for the 3DEG we used
a “diffraction corrected” form [13]:

Vcou�r� � �1�r� �1 2 e2rkth� , (4)

where kth was taken to be k0
th � �2pm�Tcf�1�2 as in Minoo

et al. [13]. Here m� � 1�2 is the reduced mass of the
electron pair. In the case of the 2DEG we have determined
kth by numerically solving the Schrödinger equation for a
pair of 2D electrons in the potential 1�r and calculating the
electron density in each normalized state [14]. Assuming
that the diffraction correction has the same form as before,
i.e., Vd�r� � exp�2kthr��r, it was found that kth�k0

th �
1.158T0.103, where T is in a.u.

As in the 3DEG, we need the quantum temperature Tq

for each rs of the 2DEG, such that the classical 2D fluid
has the same Ec�rs� as the quantum fluid. Unlike in the
3DEG, an additional complication in the 2DEG is the need
for a bridge function. In the k-spin case, if the hard-disk
radius of the bridge function is smaller than the range of
the Pauli potential, we may neglect the bridge term. In the
anti-k case, we need a bridge term B12 explicitly included,
say, via a hard-disk model [15]. The same bridge term
enters the paramagnetic PDF, g�r� � 0.5�g11 1 g12�, via
the g12. We can decouple the determination of Tq and
B12 by obtaining Tq from the fully spin-polarized system
as the bridge function is negligible in this case. Using the
analytic fit of Ec�rs, z � 1� given by Tanatar and Ceperley
[6], t � Tq�TF is found to be fitted by

t � 2��1 1 0.864 13�r1�6
s 2 1�2� . (5)

This looks very different from the Tq�rs� mapping for the
3DEG. However, when Tq is plotted as a function of
the classical coupling constant Gc � 1�Tqrs (cf. Table I),
the 3DEG and 2DEG maps are seen to be almost a single
universal function [Fig. 1(a)]. This result is conceptually
very interesting since Tq is really a single-parameter rep-
resentation of the density-functional correlation energy of
the electron gas, irrespective of dimensionality.

Unlike in the 3DEG, we need the bridge function for
g12 in order to implement the method. We include only
the anti-k B12�r�, and, hence, a one-component hard-disk
packing fraction h is needed. The effective coupling
constant, Geff � f�rs��Tcf , is a function of rsTq and
kthrs. That is, rs�t and t3�rs, where t � Tq�TF. The
Gibbs-Bogoliubov expression for the free energy of the
206404-2
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TABLE I. Relevant parameters and a comparison of the QMC correlation energies (a.u.)
of Tanatar and Ceperley (TC), Rapisarda and Senatore (RS), with those from the classical
map-HNC (CHNC) for the paramagnetic 2DEG.

rs T�TF Gc h 2Ec(TC) 2Ec(RS) 2Ec(CHNC)

1 2.000 0.500 0.235 0.10850 · · · 0.10838
5 1.849 2.704 0.372 0.04775 0.0489 0.04910

10 1.682 5.946 0.425 0.03034 0.0302 0.03023
20 1.468 13.62 0.469 0.01758 0.0174 0.01739
30 1.331 22.54 0.486 0.01251 0.0124 0.01245
one-component hard-disk system has the same depen-
dence. Also, at large rs the packing fraction should
tend to a finite limit. Since t decreases as r21�3

s , we
consider the simple functional form h � utr1�3

s . Here u is
a “global” parameter valid for the whole range of rs, and,
hence, the procedure does not involve fitting at each rs. A
constant value, u � 0.1175, proved to be applicable to the
range rs � 1 30 studied here. Values of the packing frac-
tion h, the QMC, and classical-map HNC (CHNC) values
of Ec�rs, z � 0� for the unpolarized 2DEG are given in
Table I. Our Ec�rs, z � 1� agrees with Tanatar-Ceperley
spin-polarized QMC by construction. It is common for h

to approach �0.49 at the liquid-solid transition. The trend
in the value of h seen in Table I is consistent with the
finding of Tanatar and Ceperley that the 2DEG becomes a
Wigner solid for rs � 37 6 5.

Using the Tq and the hard-disk bridge parameter u, we
can calculate Ec�rs, z , T � at any z . Our results (at T � 0)
can be presented via a “polarization function”:

FIG. 1. (a) The quantum temperature Tq for the 2DEG
(dashes) and the 3DEG (solid line) as a function of the classical
coupling constant G � b�rs. (b) The rs dependence of the
2DEG (dashes) and 3DEG (solid line) polarization functions at
T � 0.
p�rs, z � �
Ec�rs, z � 2 Ec�rs, 0�
Ec�rs, 1� 2 Ec�rs, 0�

�
z

a�rs�
1 2 za�rs�

2 2 2
2a�rs� 2 2

a�rs� � C1 2 C2�rs 1 C3�r2�3
s 2 C4�r1�3

s . (6)

Here z6 � �1 6 z �. In Hartree-Fock, the exponent a�rs�
is a constant, a � �d 1 1��d, where d is the dimension-
ality. Hence, for the 2DEG, the Hartree-Fock value of a

is 1.5. The coefficients C1 C4 are 1.540 39, 0.030 544 1,
0.296 208, and 0.239 047, respectively. A comparison of
the 2D and 3D a�rs� is given in Fig. 1(b).

Our classical mapping of the 2DEG uses the GFMC
spin-polarized xc-energy fit of Tanatar and Ceperley [6].

FIG. 2. Here the HNC g�r� are compared with GFMC simu-
lations of Tanatar and Ceperley. Solid lines: HNC, boxes:
GFMC, panels (a) and (b) unpolarized case �z � 0�, rs � 1,
and rs � 20. Panels (c) and (d) rs � 5 spin-polarized �z � 1�
and unpolarized systems.
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FIG. 3. The total Helmholtz free energy of the unpolarized
�z � 0� and polarized �z � 1� phases of the 2DEG near T � 0
and for rs � 5, 10, 20, and 30, as a function of T�TF . Solid
lines: z � 0; dashes with data points (squares): z � 1.

Our unpolarized energies (Table I) are in better agreement
with the more recent QMC results of Rapisarda et al. [9].
In Fig. 2 we compare our PDFs with those of GFMC at
rs � 1, 5, and 20 given in Tanatar et al., and find satisfac-
tory agreement.

Equation (6) for p�rs, z � provides a comparison with the
results of Varsano et al. [12], for the correlation energies at
partial polarizations, for rs � 20 and 30. Their Ec�rs, z �
(a.u.) at rs � 30 are 0.012 16, 0.011 32, 0.009 87, and
0.007 76 at z � 0.2, 0.4, 0.6, and 0.8, while the results
from our fit, Eq. (6), are 0.012 19, 0.011 34, 0.009 89, and
0.007 75, respectively. Varsano et al. suggest that the fully
spin-polarized phase is more stable, “by an amount close
to the statistical uncertainty.” Instead of using the fit, we
have evaluated the relevant PDFs accurately at rs � 30
and T � 0. Varsano et al. report a stabilization energy of
21.185 3 1025 a.u., while ours is even smaller and not
significant.

When rs is large, the kinetic energy is less important;
exchange favors spin polarization and correlation favors
the paramagnetic phase. Figure 3 displays the Helmholtz
free energy for rs � 5, 10, 20 and 30. Stable spin-
polarized phases in the 3DEG have been reported recently
[16]. Studies related to the metal-insulator transition in
the 2DEG, and numerical studies of 2D clusters, have
increasingly suggested the possibility of ferromagnetic
phases of the 2DEG [17]. The 2DEG metal-insulator
transition is influenced by the presence of impurities. Our
results are for the pure, uniform system and there seems
to be no stable ferromagnetic phase except perhaps near
rs � 30. For 2DEGs in GaAs, rs � 30 and T�EF � 0.1
corresponds to 4.7 3 108 electrons cm22 and 0.019 K.
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The more favorable m� of Si brings the densities close to
the �1010 electrons cm22 range. Details of the finite-T
calculations, the effect of impurities on the spin-polarized
phase, etc. will be presented elsewhere.

The computer codes used here may be remotely ac-
cessed by interested workers by visiting our website [18].

In conclusion, we present a classical calculation of the
PDFs, correlation energies, etc. of the 2DEG for any spin
polarization and temperature, and find good agreement
with quantum Monte Carlo results at T � 0. The tem-
perature mapping of the quantum effects obtained for 3D
and 2D systems is found to be universal, to within the
accuracy of the available quantum Monte Carlo exchange-
correlation energies. New results for spin-dependent
correlation energies and spin-polarized distribution func-
tions are given. A comparison of the free energies of the
polarized and unpolarized phases at finite T is presented.
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