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The Hubbard on-site repulsion U between opposite spin electrons on the same atomic orbital is widely
regarded to be the most important source of electronic correlation in solids. Here we extend the Hubbard
model to account for the fact that the experimentally measured atomic U is different from the one
obtained by calculation of the atomic Coulomb integral. The resulting model describes quasiparticles
that become increasingly dressed as the number of electrons in the band increases. Superconductivity can
result in this model through quasiparticle undressing. Various signatures of this physics in spectroscopies
in the normal and superconducting states are discussed. A novel effect in the normal state is predicted
to be electroluminescence at the sample-positive counterelectrode boundary.
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The Coulomb repulsion integral for two electrons in a
hydrogenic 1s orbital for a nucleus of charge Z is
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(a0 � Bohr radius). However, the effective atomic on-site
repulsion Ueff�Z� is obtained by considering the difference
in energy between ions with a different number of elec-
trons. For hydrogen (Z � 1) and helium (Z � 2) the ex-
perimental values are [1]

Ueff�1� � I 2 A � 12.86 eV � U�1� 2 4.15 eV , (2a)

Ueff�2� � III 2 II � 29.92 eV � U�2� 2 4.10 eV .
(2b)

Here I � 13.6 eV, A � 0.747 eV, II � 24.48 eV, III �
54.40 eV are the ionization energy and electron affinity
of H, and the first and second ionization energies of He.
Remarkably, the difference between Ueff and U is nearly
the same for Z � 1 and Z � 2. Indeed, the same is true
for higher Z; for Z between 3 and 8 the difference between
U and Ueff for the 1s atomic orbital, obtained from the
appropriate ionization energies [1], is, respectively, in eV,
4.22, 4.22, 4.21, 4.19, 4.15, 4.05. We conclude that for 1s
orbitals one has approximately

Ueff�Z� � U�Z� 2 4.1 eV , (3)

for a large range of Z. A similar reduction from bare
U to effective U will be found for other atomic orbitals.
This reduction occurs because when the second electron is
added to the singly occupied orbital the state of the two-
electron system is not the doubly occupied single electron
orbital. Rather, the orbital will “expand” to reduce the
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Coulomb repulsion between electrons, and furthermore the
two electrons will develop angular correlations. This effect
is, of course, well known in atomic physics, and in its
simplest form is approximately described by Slater’s rules
for the shielding constants [2]: when another electron is
added to an atom, the effective Z for the electrons in the
same shell is reduced. This effect is, however, ignored in
the ordinary Hubbard model [3].

A simple way to describe this physics is by introducing
coupling to a fictitious local boson displacement coordinate
qi for atom i that modulates the Hubbard U:

U�qi� � U 1 aqi (4)

that will relax when double occupancy occurs. As the sim-
plest model we describe the boson dynamics by a harmonic
oscillator of frequency v0 � �K�M�1�2:

Hi �
p2

i

2M
1

1
2

Kq2
i 1 �U 1 aqi�ni"ni# , (5)

and the effective on-site repulsion is found by complet-
ing the squares as Ueff � U 2 a2�2K. The equilibrium
position of the boson is qi � 0 for the orbital empty or
singly occupied, and qi � 2a�K for the doubly occupied
orbital.

The reader may argue that the ordinary Holstein
model [4]

Hi �
p2

i

2M
1

1
2

Kq2
i 1 aqi�ni" 1 ni#� 1 Uni"ni# (6)

will also describe a reduction of the bare U to a Ueff �
U 2 a2�K. However, in contrast to Eq. (5), Eq. (6) also
describes dressing of electrons in singly occupied orbitals
by the boson degree of freedom. That is not the physics
we are trying to describe here: without electron-phonon
interactions or coupling to atomic electrons in other or-
bitals, the electron in the singly occupied orbital should be
undressed.

In terms of boson creation and annihilation operators,
the Hamiltonian Eq. (5) is
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Hi � v0a
y
i ai 1 �U 1 gv0�ay

i 1 ai��ni"ni# , (7a)

Ueff � U 2 w0g2 , (7b)

with g � a��2Kv0�1�2. The boson degree of freedom de-
scribes the electronic excitation of an electron when a sec-
ond electron is added to the orbital. Hence the frequency
v0 is related to the excitation energies of the atom, and
we expect

v0 � cZ2 (8a)

with c a constant of order eV, since the excitation energies
in an atom scale with the square of the nuclear charge.
From Eqs. (3) and (7b) we conclude

g2 �
c0

Z2 (8b)

with c0 � 4.1 eV�c. For a lattice system where an electron
hops from site i to site j with hopping amplitude tij the
Hamiltonian is then

H � 2
X
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tij�cy
iscjs 1 H.c.�

1
X
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X
i

v0a
y
i ai .
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The physics described by Eq. (3), which led to the
Hamiltonian Eq. (9), is a ubiquitous phenomenon, origi-
nating in the fact that the spacing between atomic energy
levels is always smaller than the strength of the Coulomb
repulsion between electrons in a given orbital. Its quantita-
tive importance is determined by the magnitude of the ionic
charge Z, as discussed below. Other models, with auxiliary
spin degrees of freedom [5] or with only electronic degrees
of freedom [6], can be constructed containing the same
physics. The model Eq. (9) is a particular case of the gen-
eralized Holstein models discussed in Ref. [7].

By construction, the model Eq. (9) is not electron-hole
symmetric, even if the band structure defined by tij is. In
particular, a single electron in the empty band does not
interact with the boson field at all. For a few electrons
in an empty band the effect of the bosons is negligible
if the bare Coulomb repulsion U is appreciable, as the
probability of double occupancy will be small. In contrast,
a single hole in the full band interacts most strongly with
the boson field. Treating the four-fermion term in mean
field, the electron-boson part of the Hamiltonian Eq. (9) is

Hel-b � g�n�v0�ay
i 1 ai� �ni" 1 ni#� , (10a)

g�n� �
n

2
g , (10b)

that is, an ordinary electron-boson coupling with a cou-
pling constant that increases monotonically with band fill-
ing. Hence, as the usual electron-phonon interaction, it
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will give rise to an effective mass enhancement and a quasi-
particle weight reduction, which increase as the band fill-
ing and hence the effective coupling g�n� increase. There
are, however, other dynamical effects of Eq. (9) that are
lost in the mean field treatment, Eq. (10).

To study Eq. (9) we perform a generalized Lang-Firsov
transformation on the fermion and boson operators [7,8]

cis � eg�ay

i 2ai�ñi,2s c̃is � Xisc̃is , (11a)

ai � ãi 2 gñi"ñi# , (11b)

and the Hamiltonian Eq. (9) becomes

H � 2
X
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tij�Xy
isXjsc̃

y
is c̃js 1 H.c.�

1
X

i

Ueffñi"ñi# 1
X

i

v0ã
y
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with Ueff given by Eq. (7b). The ground state expectation
value of the Xis operator is

�Xis�0 � e2�g2�2�ñi,2s � 1 1 �S 2 1�ñi,2s , (13a)

S � e2g2�2 . (13b)

The part of the fermion operator Eq. (11a) associated with
ground state to ground state transitions of the boson field
is the coherent part of the operator, the quasiparticle. We
have then

cis � j0� �0j �1 1 �S 2 1�ñi,2s�c̃is 1 cincoh
is . (14)

The incoherent part of the operator

cincoh
is �

"
ñi,2s

X
�l,l0�fi�0,0�

jl� �ljeg�ay

i 2ai�jl0� �l0j

1
X
lfi0

jl� �lj

#
c̃is (15)

describes processes where the boson field makes transi-
tions to and from excited states jl�, l fi 0, which take place
only if ñi,2s � 1, that is, if the orbital is occupied by an-
other electron of opposite spin.

The quasiparticle weight in this model is, from Eq. (14),

z�n� �

∑
1 1

n

2
�S 2 1�

∏2

(16)

and decreases monotonically with electronic band filling
n, 0 # n # 2, so that quasiparticles become increasingly
dressed as the band filling increases. The factor S is the
overlap matrix element of the oscillator ground states with
and without site double occupancy [7], and S2 gives the
quasiparticle weight for a hole in the filled band [n � 2
in Eq. (16)]. According to Eq. (8b), as the ionic charge Z
decreases, S decreases rapidly, implying that hole quasi-
particles become increasingly incoherent.

We can estimate S from first principles for a hydrogen-
like ion. In the Hartree approximation, S will be given by
the overlap matrix element of the electron wave function
in the presence and in the absence of another electron in
the orbital:
206402-2



VOLUME 87, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 12 NOVEMBER 2001
S � j�w1s j w̄1s�j �
�1 2

5
16Z �3�2

�1 2
5

32Z �3
(17)

with w̄1s the 1s orbital Eq. (1b) with Z replaced by
Z̄ � Z 2 5�16, as appropriate for the Hartree wave func-
tion. If we use the more accurate Eckart wave function
[9,10] cEck for the two-electron ion, which incorporates
radial correlations, we can estimate S from the square
root of the overlap matrix element of the Eckhart wave
function and the wave function of the two electrons in the
1s orbital, as

S �
q
j�w1sw1s jcEck�j2 �

s
2f�Z, Z1�f�Z, Z2�

2�1 1 f�Z1, Z2��1�2 ,

(18a)
f�Z, Z 0� �

�ZZ 0�3�2

� Z1Z0

2 �3
. (18b)

Here Z1 and Z2 are the two orbital exponents for the
Eckart wave function obtained by minimization of the en-
ergy, which are found to be approximately Z1 � 1.14Z 2

0.105, Z2 � 0.905Z 2 0.622. The Eckart wave function
becomes unstable for Z , 0.93.

Figure 1 shows the dependence of S on the ionic charge
Z. We expect the Eckart wave function to underestimate
and the Hartree wave function to overestimate the value
of S for a given Z. Figure 1 also shows S for the dy-
namic Hubbard model, Eqs. (13b) and (8b), for a value of
c0 that matches the Eckart wave function results for large
Z. While the three curves are different, the qualitative be-
havior is the same, showing a decrease of S as the ionic
charge Z decreases, which describes the increased inco-
herence of single hole carriers in the system as the ionic
charge decreases.

Upon replacement of the operator form Eq. (14) in the
Hamiltonian Eq. (12), and ignoring the incoherent part of
the operators, we obtain the effective Hamiltonian describ-
ing propagation of quasiparticles:

FIG. 1. Parameter S versus ionic charge Z in the Hartree and
Eckart approximations, and in the electron-boson model with
c0 � 0.2 [Eqs. (8b) and (13b)]. The deviation of S from 1
indicates the degree of quasiparticle dressing for an almost
full band.
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Hqp � 2
X
ijs

t̃s
ij�c̃y

isc̃js 1 H.c.� 1
X

i

Ueffñi"ñi# , (19a)

where the hopping amplitude now will depend on the oc-
cupation of the two sites involved in the hopping process:

t̃s
ij � tij�1 1 �S 2 1� �ñi,2s 1 ñj,2s�

1 �S 2 1�2ñi,2sñj,2s� . (19b)

The effective quasiparticle Hamiltonian Eq. (19) will
accurately describe the low energy physics of the full
Hamiltonian Eq. (12) in the strong coupling regime,
where the Lang-Firsov approximation to the Holstein
model becomes accurate. Even in that regime, however,
the high energy degrees of freedom described by the full
Hamiltonian Eq. (12) still play an important role in
ensuring that various sum rules that are violated by the
low energy Hamiltonian Eq. (19a) are satisfied.

The hopping amplitude for an electron of spin s when
there are electrons of opposite spin at both sites i and
j, i.e., ñi,2s � ñj,2s � 1 is, from Eq. (19b), t2 � S2tij ,
and when there is one other electron at the two sites, i.e.,
ñi,2s 1 ñj,2s � 1, t1 � Stij. If S ø 1, then t2 ø t1.
In the limit where t2 can be neglected with respect to t1

it becomes obvious that the Hamiltonian Eq. (19) leads
to pairing of two holes in a full band: a state where the
two holes are separate describes essentially localized holes
with zero energy, since t2 	 0; a lower energy state results
from a linear combination of states where the two holes are
on the same or nearest neighbor sites, with energy of or-
der epair 	 22p 3 t2

1�Ueff with p the number of nearest
neighbors to a site. More generally, an exact criterion can
be found for the parameters that will yield a bound state
for two holes in a filled band described by the Hamiltonian
Eq. (19) [11]:

Ueff

D
# 1 2 S2 , (20)

where D is the bare bandwidth of the band defined by
tij . The same criterion is found for existence of supercon-
ductivity in the dilute carrier concentration regime in BCS
theory [12], a regime where BCS theory is expected to be
accurate, and quantitatively close results are obtained from
exact diagonalization of small systems [13]. As the atomic
charge Z decreases, the coupling g increases [Eq. (8b)],
hence S decreases [Eq. (13b)], and furthermore Ueff de-
creases [Eqs. (3) and (1a)]. Both of these effects are in
the right direction to satisfy the condition Eq. (20). Fur-
thermore, if the interatomic distance is decreased, tij and
the bare bandwidth D will increase, again in the direction
of satisfying the inequality Eq. (20). We conclude that su-
perconductivity induced by this physics will occur in sys-
tems where the ionic charge Z is small, the interatomic
distances are small, and the Fermi level is close to the top
of a band. The parameter regime where the Hamiltonian
Eq. (9) yields superconductivity has not yet been estab-
lished; however, numerical studies of the similar spin-1�2
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Hamiltonian [5] have shown that pairing survives well be-
yond the parameter regime where the mapping to the ef-
fective Hamiltonian Eq. (19) is accurate.

The dressing of hole quasiparticles decreases in this
model as the hole concentration increases, and correspond-
ingly the hole quasiparticle weight increases, as seen from
Eq. (16) or its equivalent in hole representation

zh�nh� � S2

∑
1 1

nh

2
Y

∏
(21)

with nh � 2 2 n, Y � 1�S 2 1. In the normal state,
this should be seen in the one-particle Green’s function
as a transfer of spectral weight from the incoherent part,
describing high energy excitations of the boson field on
the scale of v0, to the quasiparticle peak as the hole
doping increases. Correspondingly, a transfer of spec-
tral weight in optical absorption should be seen, from
high frequency absorption on the scale of v0 to intraband
Drude absorption with plasma frequency determined by
t2�nh� � t2 1 nh�t1 2 t2�. From the operator relationship
for hole quasiparticles derived from Eq. (14),

c
hy
is � S�1 1 Yñh

i,2s�c̃hy
is , (22)

it is seen that the expectation value �ch
isc

hy
js� acquires con-

tributions from anomalous expectation values �c̃h
isc̃h

js�.
This will cause transfer of spectral weight from high to low
frequencies in the one- and two-particle Green’s functions
for fixed hole doping when the system goes superconduct-
ing, which should also be observable in photoemission and
optical absorption experiments [7].

Nonperturbative theoretical techniques such as dynami-
cal mean field theory [14] and density matrix renormaliza-
tion group [15] should be able to establish the parameter
regime in the Hamiltonian Eq. (9) where the physics of su-
perconductivity through undressing described above takes
place. First-principles quantum chemical and density-
functional calculations should be able to relate the parame-
ters in Eq. (9) to real materials. The physics discussed here
predicts that superconductivity is favored in systems where
conduction is through holes in nearly filled bands and
through conducting structures that are negatively charged
(small ionic charge Z), and that such systems will show
undressing of hole carriers both when the system is doped
with holes and when it goes superconducting. These ef-
fects will be most apparent when Z is small and Y is large,
which also leads to high Tc. The facts that most super-
conductors show hole carrier transport in the normal state
[16], that both MgB2 and the high Tc cuprates have holes
conducting in highly negatively charged substructures [B2

and �CuO2�� planes], and that the high Tc cuprates show
206402-4
evidence of “undressing” upon hole doping and upon go-
ing superconducting [7,17–19], suggest that the physics of
the dynamical Hubbard model may have something to do
with the physics of superconductivity in real materials.

In the regime most favorable for superconductivity,
i.e., hole conduction in a system with large Y, the model
Eq. (9) predicts that incoherent excitations on electronic
energy scales (v0) will be induced when holes hop.
Hence one would expect nonthermal high frequency
radiation to be generated when a dc current circulates in
the normal state. This electroluminescence [20] should
be most pronounced and easily observable at the positive
counterelectrode-sample boundary, where holes are in-
jected into the sample. The intensity of the radiation should
correlate with the magnitude of the dressing and hence of
Tc, and the frequency distribution will give information
on the scale of electronic excitation energies involved
in the undressing process that leads to superconductivity.
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