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We propose an explanation for the apparent semimetal-insulator transition observed in highly oriented
pyrolitic graphite in the presence of magnetic field perpendicular to the layers. We show that the magnetic
field opens an excitonic gap in the linear spectrum of the Coulomb interacting quasiparticles, in close
analogy with the phenomenon of dynamical chiral symmetry breaking in the relativistic theories of
the �2 1 1�-dimensional Dirac fermions. Our strong-coupling approach allows for a nonperturbative
description of the corresponding critical behavior.
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The recently discovered carbon-based materials provide
a new playground for applications of the advanced methods
of quantum field theory. Although the best known example
is that of the one-dimensional carbon nanotubes described
as the Luttinger liquid, some of the available nonperturba-
tive techniques can also be applied to higher dimensional
systems, such as layered highly oriented pyrolitic graphite
(HOPG).

In a single sheet of graphite, the low-energy spectrum
of the quasiparticle excitations becomes linear in the
vicinity of the two conical points located at the opposite
corners of the two-dimensional Brillouin zone, where the
conduction and valence bands touch each other [1]. These
low-energy excitations can be conveniently described in
terms of a four-component Dirac spinor Cs � �c1As ,
c1Bs, c2As, c2Bs�, combining the Bloch states cis�r�
with spin s which are composed of the momenta near
one of the conical points �i � 1, 2� and propagate inde-
pendently on the two different sublattices �r � A, B� of
the bipartite hexagonal lattice of the graphite sheet. In the
following discussion, we will treat the number of the spin
components N as a tunable parameter, the physical case
corresponding to N � 2.

The use of the Dirac spinor representation allows one to
cast the quasiparticle kinetic energy in the relativisticlike
form

K � iy
NX

s�1

Z
d2r Cs�ĝ1=x 1 ĝ2=y�Cs , (1)

where Cs � Cy
sg0. The reducible representation of

the 4 3 4 ĝ matrices ĝ0,1,2 � �t3, it2, 2it1� ≠ t3 satis-
fying the usual anticommutation relations �ĝm, ĝn� �
2 diag�1, 21, 21� is given in terms of the triplet of the
Pauli matrices ti , and the velocity y � 106 m�s is pro-
portional to the width of the electronic p-orbital band.

The Lorentz invariance of the noninteracting Hamilto-
nian is not, however, respected by the interaction term

U �
g

4p

NX
s,s0�1

Z
d2r d2r0 Cs�r�ĝ0Cs�r�

1
jr 2 r0j

3 Cs 0�r0�ĝ0Cs 0�r0� (2)
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which accounts for the long-range part of the Coulomb
coupling whose strength is characterized by the dimen-
sionless parameter g � 2pe2�e0y.

The earlier perturbative studies of the effects of the
Coulomb interaction resulted in the prediction that, upon
renormalization, the strength of the effective coupling
g�e� � 1�jlnej monotonically decreases with the energy
e, hence the paramagnetic semimetallic ground state
remains stable [2]. However, this conclusion appears to
contradict the recent experimental observation of a fer-
romagnetic bulk magnetization (inconsistent with the
estimated number of magnetic impurities) in the HOPG
samples showing insulating behavior of the resistivity [3].

In fact, the large value of the bare Coulomb coupling
g * 10 suggests that a more appropriate starting point
might be the strong coupling regime, where perturbation
theory fails and a more capable approach is needed. In
this Letter, we propose such an approach by focusing on
a recent experimental observation of the apparent mag-
netic field-driven semimetal-insulator transition in HOPG
[4] and demonstrate that external magnetic field can trigger
the instability towards excitonic insulator phase. Interest-
ingly enough, the latter appears to have much in common
with the phenomenon of chiral symmetry breaking (CSB)
which has been previously studied in the relativistic theo-
ries of the interacting Dirac fermions.

In the case of graphite, the issue of CSB comes about
due to the invariance of Eqs. (1) and (2) under arbitrary
U�2N� rotations of the 2N-component vector comprised of
the chiral Dirac fermions C�L,R�s � 1

2 �1 6 ĝ5�Cs , where
the matrix ĝ5 � 1 ≠ t2 anticommutes with any ĝm.

In a quantum system, strong interactions can give rise
to the appearance of a fermion mass and gapping of the
fermion spectrum, thereby breaking the continuous chi-
ral symmetry U�2N� down to its subgroup U�N� ≠ U�N�
which corresponds to the independent rotations of CLs

and CRs.
As one important �2 1 1�-dimensional example, CSB

can be caused by interaction with a scalar Higgs-Yukawa
(HY) bosonic mode coupled to the Dirac fermions via the
mass operator

P
s CsCs. In this case, CSB is known

to occur for any number of fermion species N , provided
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that the strength of the (intrinsically attractive) HY cou-
pling exceeds a certain critical value. Recently, this model
was applied to the analysis of the condensed matter sys-
tems, where the scalar bosonic field describes fluctuations
of a superconducting order parameter [5] or piezoelectric
phonons [6].

In contrast, the repulsive Lorentz-invariant vectorlike
coupling via the current operator

P
s CsĝmCs drives the

Dirac fermions towards the CSB transition, regardless of
the coupling strength, provided that the number of fermion
species N is sufficiently small �N , Nc�. This behavior
is believed to occur in the strong-coupling infrared fixed
point in the �2 1 1�-dimensional quantum electrodynam-
ics �QED3� where the zero temperature value of Nc was
found to be smaller or equal to 3�2 [7].

However, this situation changes drastically in the pres-
ence of the magnetic field which suppresses the orbital mo-
tion of the Dirac fermions and collapses their spectrum into
a discrete set of the (relativistic) Landau levels. This ef-
fectively reduces the dimensionality of the problem, thus
enabling CSB to occur, regardless of the coupling strength
and/or the number N of fermion species.

In the Dirac picture of the quasiparticle excitations in
layered graphite, the onset of CSB would be manifested
by a nonzero value of the order parameter

P
s CsCs �P

is�cy
iAsciAs 2 c

y
iBsciBs�. It determines the magnitude

of the fermion gap proportional to the electron density im-
balance between the A and B sublattices and corresponds
to the formation of a site-centered charge density wave
(CDW) in the excitonic insulating ground state.

While for a sufficiently small N the excitonic instability
could develop even in a single layer of graphite [8], in the
physical case N � 2 it is unlikely to occur in the absence
of the interlayer Coulomb repulsion. Indeed, in a realis-
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tic HOPG system consisting of many layers stacked in a
staggered configuration, the latter favors spontaneous de-
pletion of the electron density on one of the two sublattices
(e.g., A) formed by the carbon atoms positioned, vertically,
at the centers (respectively, corners) of the hexagons in the
adjacent layers. Within each layer, such a depletion (and
excess occupation of the complementary sublattice, e.g.,
B) conforms to one of the two degenerate CDW patterns
which then alternate between the layers, thereby keeping
the electrons in the adjacent layers as far apart as pos-
sible and further strengthening the propensity towards the
excitonic instability. Although the minimal strength of
the interlayer Coulomb repulsion required for CSB to oc-
cur in HOPG remains unknown, this whole situation, too,
changes when the system is exposed to magnetic field nor-
mal to the layers which promotes CSB even in the absence
of the interlayer coupling.

In the presence of the magnetic field B, the Dirac
fermion Green function remains diagonal in the space of
the physical spin (not to be confused with the 4 ≠ 4 space
of the g matrices representing the orbital dynamics), and,
for a given s, it reads as

Ĝ�x,y� � ei�2�x2y�mAm�x1y�Ĝ�x 2 y� , (3)

where the translationally noninvariant phase factor con-
tains the vector potential of the external field Am�x� �
�0, 2Bx2�2, Bx1�2�. Upon separating this factor out, one
obtains a translationally (albeit not Lorentz-) invariant
Green function Ĝ�x�.

The effect of the fermion interactions can be fully ac-
counted for by introducing the gap function D�p� as well
as the wave function �Z� and velocity �Zy� renormalization
factors into the Fourier transform of Ĝ�x� given by the in-
tegral representation [hereafter, we use the units y � e �
h̄ � 1 and the relativistic notations, such as pm � �e, p�]
Ĝ�p� �
i
B

Z `

0
ds exp

∑
2

s
B

µ
D2�p� 2 Z2e2 1 Z2

yp2 tanhs
s

∂∏

3 ��D�p� 1 Zeĝ0� �1 2 iĝ1ĝ2 tanhs� 2 Zyĝp�1 2 tanh2s�� (4)
which the exact Green function naturally inherits from the
bare one, Ĝ0�p�, given by Eq. (4) with Z � Zy � 1 and
D�p� � 0.

Owing to its nonperturbative nature, the phenomenon of
CSB eludes weak-coupling analysis based on perturbation
theory. Nonetheless, akin to its relativistic counterpart, the
occurrence of CSB in the system of the Coulomb interact-
ing Dirac fermions can be inferred from the nonperturba-
tive solution of the Dyson equation for the renormalized
Green function

Ĝ21�p� 2 Ĝ21
0 �p� � ig

Z d3k

�2p�3 Z
ĝ0Ĝ�p 1 k�ĝ0

jkj 1 Ngx�k�
.

(5)

In Eq. (5) we made use of the Ward identity relating the
vertex function ĝ0Z to the energy derivative of G21�p�
and cast the effective intralayer Coulomb interaction in the
form governed by the scalar (density-density) component
of the fermion polarization operator

x�k� � i Tr
Z d3p

�2p�3 Zg0Ĝ�p 1 k�g0Ĝ�p� . (6)

As a result of the broken Lorentz invariance, due to both
the nonrelativistic nature of the Coulomb interaction and
the presence of the magnetic field, the solution of the gap
equation (5) can feature totally different dependencies on
the energy and momentum variables. Apart from the Zee-
man shift smBB of the position of the Fermi level for the
spin-s fermions, Eq. (5) remains spin degenerate.

The analysis of Eq. (5) is complicated by the fact that,
unlike in the previous studies of the excitonic transi-
tion in semimetals with overlapping conduction and va-
lence bands, the naive picture of static Debye screening
206401-2
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�xk 	 const� fails to properly describe the feedback from the planar Dirac fermions on the bare Coulomb interaction.
Instead, in the undoped or lightly doped graphite with a low density of carriers the zero temperature fermion polarization
(6) can be expressed only in the form of a cumbersome double integral [9],

x�k� �
Zq2

2
p

pB

Z `

0

p
u du

sinhu

Z 1

21
dy �coshuy 2 y cothu sinhuy�

3 exp

∑
2

u
B

µ
D2 2

1
4

�1 2 y2�Z2v2
∂

2
Z2

yq2

2B sinhu
�coshu 2 coshuy�

∏
. (7)
Nonetheless, progress towards obtaining the solution of
Eq. (5) can still be made in the strong field limit where the
distance between the adjacent Landau levels of the non-
interacting Dirac fermions En � 6

p
2jnjB by far exceeds

the Coulomb interaction-related energy gap D, and the only
relevant fermion states appear to be those of the so-called
lowest Landau level (LLL) with n � 0. In this regard,
the problem at hand bears a certain resemblance to the
fractional quantum Hall effect (FQHE) in the system of
nonrelativistic fermions with a parabolic dispersion. In
contrast to the spatially homogeneous FQHE, however,
the sought solution of the gap equation corresponds to a
nonuniform CDW ground state, as explained above.

In the strong field approximation D ø
p

B the fermion
Green function reduces to its LLL projection

ĜLLL�p� 	 ie2Z2
yp2�B Zeĝ0 2 D

D2 2 Z2e2
�1 2 iĝ1ĝ2� (8)

and, correspondingly, the zero temperature fermion polar-
ization receives its main contribution from the transitions
between the LLL and the first excited Landau level

xLLL�v, k� 	
p

2B
Zk2

B 2 Z2v2�2
e2Z2

yk2�2B. (9)

Neglecting the wave function, velocity, and vertex renor-
malizations in the scalar part of Eq. (5) (see below), one
readily obtains a closed equation for the gap function

D�p� � i
Z dv dk

�2p�3

D�k 1 p�
�e 1 v 1 id�2 2 D2�k 1 p�

3
ge2��k1p�21p2��B

jkj 1
p

B gNk2e2k2�2B�B 2 v2�2�21
.

(10)

Equation (10) should be contrasted with that derived in
the strong field limit in the case of QED3 where the LLL
projection eliminates all but the scalar component of the
Lorentz-invariant Abelian gauge interaction, thus resulting
in the gap equation (10) with the term jkj in the denomi-
nator of the integrand replaced by k2 � k2 2 v2, as re-
quired by the Lorentz invariance of the bare gauge field
spectrum.

It is this difference which gives rise to the nontrivial en-
ergy dependence of the solution of the QED3 gap equation
found in Ref. [9]. By contrast, in our case the solution
of Eq. (10) remains independent of the energy variable as
long as e &

p
B and, being the sole function of the mo-

mentum, it falls off faster than e22p2�B for jpj .
p

B. It
can also be shown that the approximate constancy of D�p�
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at small momenta and energies justifies our neglecting the
wave function and velocity renormalization �Z � Zy � 1�.

The magnitude of the zero-momentum gap D � D�0�
estimated from Eq. (10),

D 	
p

B ln�Ng�
4pN

, (11)

demonstrates that the strong field condition holds at large
N regardless of the field strength B (which should, how-
ever, be smaller than the width of the linear part of the bare
quasiparticle spectrum).

At finite temperatures the gap decreases, and its momen-
tum dependence at jpj & �T

p
B �1�2 becomes even less

pronounced. Although the prohibitive form of the finite
temperature fermion polarization impedes analytical cal-
culations, its main effect can be taken into account through
the modified lower cutoff in the logarithmically divergent
momentum integral in Eq. (10) which now becomes the
larger of

p
B�gN and �T

p
B �1�2.

After being extended to finite temperatures, Eq. (10)
yields the self-consistent equation for the magnitude of the
gap at small momenta

DT 	
p

B

4pN
ln

p
B

max�
p

B�gN ; �T
p

B �1�2�
tanh

DT

2T
. (12)

Equation (12) possesses a nontrivial solution below the
transition temperature Tc�B� whose large-N estimate is
given by the expression

Tc 	
p

B lnN
16pN

. (13)

Conversely, Eq. (13) determines a threshold magnetic field
Bc�T� ~ T2 which has to be exceeded in order for CSB to
occur at a nonzero temperature T . This relation defines a
critical line in the B 2 T phase diagram, along which the
gap vanishes as

DT �B ! Bc� ~

q
B 2 Bc�T� (14)

As far as the nature of the CSB transition is concerned,
the dependence (14) is characteristic of the second or-
der transition, whereas the conjectured zero field transition
(for N , Nc) is of the topological (Kosterlitz-Thouless)
type [8].

These predictions should be compared with the available
experimental evidence obtained from the HOPG samples
showing metallic behavior of the zero field resistivity. The
data of Ref. [4] indicate that, albeit absent in zero field,
the apparent semimetal-insulator transition can be induced
by magnetic field normal to the layers. The insulating
206401-3
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behavior was found to set in at the field-dependent charac-
teristic temperature fitted as T � ~

p
B 2 B0 which, apart

from the offset field B0, agrees with Eq. (13) and falls into
the experimental range &100 K for the applied magnetic
field B & 0.2 T (in order to avoid confusion we recall that
in our quasirelativistic system the role of the “speed of
light” is played by y). The proposed orbital (as opposed
to the spin-related) nature of the observed phenomenon
is also consistent with the findings of Ref. [4], according
to which the in-plane magnetic field has a substantially
(2 orders of magnitude) weaker effect.

In fact, the spin degeneracy between the triplet and sin-
glet excitonic gaps (for N � 2) will be lifted upon includ-
ing the short-range Coulomb exchange interaction omitted
in Eq. (2) which involves transitions between the conduc-
tion and valence bands. Alongside the Zeeman coupling,
the latter favors the triplet excitonic order parameter, in
accordance with Hund’s rule. In the doped system, the
spin up and down states will then be occupied asymmet-
rically at low temperatures, resulting in the occurrence of
a ferromagnetic spin polarization M � Tr� �sG� in a win-
dow of the electron chemical potential m set by the gap D.
The induced ferromagnetic moment will then be propor-
tional to m � D as well, which compares favorably with
the electron spin resonance (ESR) data in HOPG showing
the presence of the magnetization M ~

p
B 2 B0 on the

insulator side of the field-induced transition [10].
Before concluding, we comment on the previous at-

tempts to apply the alternate scenario of the magnetic
field-driven CSB in the Lorentz-invariant HY model to the
analysis of the quasiparticle transport in the mixed state
of the planar d-wave superconductors [11]. Specifically,
the authors of Ref. [11] focused on the experimentally ob-
served kinklike feature in the magnetic-field dependence
of the total (inclusive of both the normal quasiparticle and
the phonon contributions) thermal conductivity, the posi-
tion of the kink scaling with temperature as B��T� ~ T 2

[12] (this behavior was not seen, however, in a more re-
cent experiment [13]).

On the theoretical side, the suggestion of using the stan-
dard HY model to describe the nodal d-wave quasiparticles
in the mixed state must be taken cautiously. Apart from
the default choice of the quasiparticle interaction in the
form of the attractive HY coupling, the “magnetic cataly-
sis” scenario of Refs. [11] requires that the total effective
magnetic field, which the nodal quasiparticles are exposed
to, has a nonzero overall flux, resulting in the formation of
the Landau levels.

However, as pointed out by several authors [14], the cor-
rect picture of the d-wave quasiparticle spectrum is rather
that of the extended energy bands, owing to the fact that
in the mixed state the quasiparticles are actually experi-
encing both the external magnetic field and the solenoidal
superfluid flow created by the vortices. On average, the
two fluxes exactly cancel each other [14], thus rendering
inapplicable the standard HY mechanism of the magnetic
catalysis even in the regime of weak-to-moderate magnetic
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fields, where the individual vortices strongly overlap and
the physical magnetic field is almost uniform. In light of
the above, HOPG might be the only presently known ex-
ample of a condensed matter system where the phenome-
non of magnetic catalysis can indeed occur.

In summary, we study the problem of the Coulomb
interaction-driven electronic instabilities in layered graph-
ite in the presence of magnetic field. Elaborating on the
relativisticlike description of the low-energy quasiparticle
excitations in a single sheet of graphite, we propose a pos-
sible explanation for the recently discovered field-induced
semimetal-insulator transition by showing that applied
magnetic field induces the excitonic insulator phase, thus
gapping up the quasiparticle spectrum and creating a site-
centered CDW.

Since the phenomenon in question was observed only
in perpendicular magnetic field, we believe that the
experimental findings of Refs. [4,10] reveal some novel,
intrinsically two-dimensional, physics whose origin is
different from that of the (semi)metal-insulator transitions
observed in other carbon-based materials, such as the one-
dimensional [�Ru, Cs�C60] as well as three-dimensional
�KC60� alkali doped fullerides. The latter are likely to be
associated with the structural instabilities and/or accom-
panied by the onset of the antiferromagnetic spin-Peierls
state. In order to decisively discriminate between these
possibilities, such experimental techniques as ESR, NMR,
x-ray diffraction, and electron photoemission can be fur-
ther implemented.
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