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Anomalous Strength of Membranes with Elastic Ridges
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We report on a simulational study of the compression and buckling of elastic ridges formed by joining
the boundary of a flat sheet to itself. Such ridges store energy anomalously: their resting energy scales
as the linear size of the sheet to the 1�3 power. We find that the energy required to buckle such a ridge
is a fixed multiple of the resting energy. Thus thin sheets with elastic ridges such as crumpled sheets are
qualitatively stronger than smoothly bent sheets.
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Introduction and Theory.—When the boundaries of an
elastic sheet are sufficiently distorted, singular deforma-
tions in the sheet often occur [1–6]. These singularities
are immediately apparent when one crumples a sheet of
paper between the hands. Analogous singularities occur
whenever the sheet is forced to have points of high curva-
ture [4–6]. One can readily form such a “puckered” sheet
by fastening the edges of that sheet to form disclinations
as shown in the cube of Fig. 1. Recently it has been recog-
nized that such structures typically have their energy con-
centrated into so-called stretching ridges, in which strain
and curvature energies are in balance [4–6]. The ridge
increases the stored elastic energy in the structure dramati-
cally relative to that of a uniformly curved sheet occupying
the same region. This enhancement of energy grows as a
power of the linear size of the structures relative to the
thickness of the sheet.

The large energy content of these structures suggests
that they should be strong. They should resist deforma-
tion and buckling under external loads qualitatively better
than nonsingular structures. In this note we demonstrate
this strength by showing that the scaling laws governing
the ridge energy also predict its response to loads and its
buckling threshold.

We simulate the compression of an elastic cubic shell
by the application of external, inward-pointing forces at
its vertices. The cube is formed from a flat sheet as shown
in Fig. 1. With this connectivity the sheet naturally forms
stretching ridges along the edges of the cube. We push on
the vertices of the cube until the ridges buckle into several
smaller ridges. By rescaling the compressed configuration
with the same thickness scaling laws as those appropriate
for the resting configuration, we demonstrate that the re-
sponse of the ridge to this kind of forcing is completely
described by the 1�3 power ridge scaling solution deter-
mined in [4]. We also demonstrate that the onset of the
buckling instability follows this scaling as well.

Ridge scaling comes about as a way to balance bending
and stretching energy costs. It has been shown [4] that the
important dimensionless parameter governing the elastic
energy of a single ridge of length X and material thickness
h is the aspect ratio
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where Y is the two-dimensional Young’s modulus of the
material, k is an effective bending modulus, and n is its
Poisson ratio. To account for these strong deformations
requires the strongly nonlinear von Kármán equations [7].
If all lengths are expressed in units of X and all energies
in units of k, these equations can be expressed in dimen-
sionless form,

=4f � �x, f� 1 P, l2=4x � 2
1
2

� f, f� , (2)

where all derivatives are taken with respect to the dimen-
sionless variables x�X and y�X. Here the bracket product
represents

�a,b� � eamebn�≠a≠ba� �≠m≠nb� , (3)

P is an arbitrary external pressure field acting normal to
the surface (in units of kX3), and the potential fields are
related to the curvature Cab and stress sab by

Cab � X21≠a≠bf , (4)

sab � kX22eamebn≠m≠nx . (5)

This form of sab automatically satisfies the equilibrium
condition ≠asab � 0.

Since l comes into the von Kármán equations multi-
plying the stress source term, the possible configurations
of a thin elastic sheet are well described by a stress free,
l � 0 folding solution plus boundary layers at the fold
lines. Lobkovsky’s insight in [4] was to try a scaling solu-
tion for the boundary layer of a single ridge which matched
the f scaling of the outer, sharp fold solution. For a fold
of dihedral angle a across the line y � 0, f � ajy�Xj.
Accordingly, on the boundary layer f should scale with
the same power of l as the dimensionless transverse co-
ordinate y�X. Substituting a scaling form into the dimen-
sionless von Kármán equations with P � 0 and equating
the highest order terms yields scaling of the form

f � l1�3f̃, x � l22�3x̃ ,

y � l1�3Xỹ, x � Xx̃ ,
(6)
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FIG. 1. A typical elastic sheet used in this study. The top
left image illustrates how a flat sheet is joined at its edges to
form a cube. The top right image shows the simulated section
of the sheet and the reflection planes to which its edges are
constrained. The bottom image shows the resting configuration
of the cube with no external forces acting. The thickness of
the sheet is 0.0004 of the edge length and the Poisson ratio is
1�3. Darker shading represents a greater change in absolute
energy density between resting and buckling threshold states.
The simulated section of the sheet is uniformly darkened in
the bottom image. The energy was minimized in this darkened
diamond-shaped region; the rest of the cube shape was inferred
by symmetry. Slight numerical symmetry breaking between the
left and right sides of the diamond created slight mismatches of
the inferred surfaces on other faces, such as the right-hand face.
The numerical grid is visible as a quiltlike texture. It has a finer
scale at the edges and corners where curvature is larger.

where the tildes denote dimensionless, scale free coordi-
nates and functions. This translates to l1�3 scaling of the
boundary layer width, l21�3 scaling of the transverse ridge
curvature, and l2�3 scaling of gxx, the strain along the
ridge length.

External forcing applied to the sheet enters the
von Kármán equations via the term P and via boundary
conditions at the sheet’s edges. In this research we
consider an external potential which essentially applies
point forces to either end of a ridge. Since the spatial
extent of the applied force is a delta function we do
not expect it to destroy the spatial scaling of the ridge
solution. Therefore we may reasonably expect to find that
the equilibrium configuration of a ridge under a given
compressive force is identical to rescaled configurations
of ridges with different material thickness and properly
rescaled external force magnitudes.
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To calculate the proper rescaling of the forces on the
vertices for a similarity solution, we consider our forcing
as a boundary condition consisting mainly of an in-plane
point force. This force amounts to a point stress at the
edge of the sheet with the form

s�o�
xx � Fod�y� . (7)

So, to find similar scaled configurations of the sheet, we
must scale s

�o�
xx the same way sxx scales on the ridge. Ex-

pressed in terms of the dimensionless, scale free function
s̃xx , the midridge stress scales like

sxx � kl24�3X22s̃xx .

To express s
�o�
xx in a similar fashion, we substi-

tute the scale free y variable ỹ � l21�3y�X, so that
d�y� � l21�3X21d�ỹ�. The proper scale free force can
therefore be written in terms of Fo as

Fo �
kl21

X
F̃o � YhF̃o . (8)

Thus the characteristic force F̃o is like that for any thin
sheet [8], and shows no particular reflection of the ridge
structure.

For reasons which will become clear in the next section,
we cannot measure the force we apply to our ridge with
very good accuracy. However, we can measure the inward
displacement D of the ridge ends caused by this forcing.
The proper rescaling of D may be derived by assuming
that the macroscopic strain D�X has the same scaling as
the local strain on the ridge line, gxx � l2�3g̃xx , where g̃xx

is a dimensionless, scale free function. This immediately
yields a relation for the scale free displacement D̃,

D � l2�3XD̃ . (9)

This relation is consistent with our force scaling derived
above if we assume that the work done by equivalent
rescaled forces, given approximately by FoD, scales the
same as the total energy of the resting ridge configuration,
which has been shown [6] to scale as kl21�3.

Numerics.—To test these scaling predictions we
simulate a flat elastic sheet joined to form a cube as shown
in Fig. 1. The sheet is a triangular grid with variable grid
spacing. Strains and curvature are taken to be constant
across the face of each triangle, with curvature calculated
relative to the local normal at each triangle. Bending
and stretching energies were assigned to the curvature
and strains on each triangle using the forms for elastic
energy presented in [9] for a sheet of elastic thickness
h and Poisson ratio 1�3. The gridding was chosen to
have smooth gradients in triangle density over most of
the surface while concentrating the lattice spacing at the
vertices by a factor of 103 and across the ridge line by
a factor of 102 compared to the flat regions far from the
ridge. The concentrations factors were chosen arbitrarily,
within the limits of the mapping, to make the gridding
near the vertices as fine as possible.
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Pushing on the tips of the cube is accomplished by intro-
ducing repulsive potentials of the form V �r� � Cp�j�r 2
�xp j

2 centered around points �xp which lie just outside the
vertices of the cube. To prevent rotation, the vertices are
explicitly constrained to lie on radial lines that pass through
the center of the cube and the points �61, 61, 61� which
define the vertices of a perfect cube. The center points
of the pushing potentials are located on these radial lines,
at the point where the vertex would lie if the sheet were
sharply folded at the ridges — relaxation of the ridge curva-
ture draws the vertices inward from these points for an un-
forced resting ridge. This potential concentrates the forces
at the corners without creating lattice-scale numerical in-
stabilities. Cp was varied to apply different loading.

An inverse gradient routine [10] was used to minimize
the total elastic and potential energy of the sheet as a func-
tion of the coordinates of all the lattice points for given
parameters k, Y , and Cp .

To save computational time, energy was computed and
minimized on only one ridge line (the diamond shaped re-
gion highlighted in Fig. 1). The positions of points on the
rest of the cube were calculated by reflection across sym-
metry planes. This constraint explicitly required that the
edges of the simulated region be confined to the symmetry
reflection planes. Thus many forms of deformation that
break the symmetry of the resting state are not possible
in the simulation. However, the minimization may break
the left-right symmetry of the diamond-shaped region, and
we found that it does so to a slight degree. The asymme-
try shows up in our reconstruction as a slight mismatch
in other faces of the cube, as noted in Fig. 1. We do not
believe these mismatches are important for the scaling phe-
nomena we report.
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FIG. 2. Energy of ridges at rest and at the buckling threshold.
Straight lines are least squares fits to a scaling form y � axb .
In this plot l ranges from 1.25 3 1023 to 1.77 3 1025. The
plot shows the total elastic energy (EB 1 ES) in the sheet after
minimization. The scaling exponent fit for the resting ridge
values (lower line) was 20.32, the fit at the buckling threshold
was 20.31. The inset shows the difference between threshold
energy and resting energy in units of the resting energy. This
energy ratio is best fit by a scaling exponent of 0.05 6 0.02 and
is consistent with a constant ratio.
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We found minimum energy configurations for ridges of
aspect ratio l ranging from 1.25 3 1023 to 1.77 3 1025.
The upper bound on l was determined by the range of va-
lidity of the ridge scaling solution —above this value the
width of the ridge becomes comparable to that of the sheet.
At the other extreme, for l , 1025 the radius of curva-
ture at the ridge line becomes comparable to the spacing
of our lattice and the simulation ceases to be accurate. For
each value of l we first found the minimum energy con-
figuration with no applied forces. This configuration was
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FIG. 3. Demonstration of a similarity solution for the ridge
response to forcing. Both plots show Cyy , the curvature across
the ridge line, versus the y material coordinate on the line which
bisects the ridge line. The data are for sheets with seven different
values of l, ranging from 1.25 3 1023 to 1.25 3 1024. Plot
(a) shows Cyy 3 �l�l1�1�3 vs y 3 �l�l1�21�3 for the ridges
at rest and for ridges with inward vertex displacement D�l� �
D

�c�
1 3 �l�l1�0.67, where D is measured from the resting vertex

positions, l1 is the aspect ratio for the thickest sheet, and D
�c�
1

was the vertex displacement at the buckling threshold for the
thickest sheet. The profiles with the large central peak are the
buckling threshold values. (The small dimple in the data at y �
0 is a numerical artifact due to a discontinuity in the gridding
density across the ridge line. For finer gridding this dimple goes
away, while all other local values of curvature remain constant.)
Plot (b) shows unscaled Cyy versus y for the buckling threshold
profiles plotted in (a).
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then used as the initial condition to find minimum total en-
ergy configurations for the ridge in the presence of the tip-
pushing potential described in the numerics section. We
made the tip forcing progressively stronger by increasing
the potential coefficient Cp in constant steps, each time
evolving the grid to an energy minimizing configuration.
The forcing was increased until the ridge buckled. Buck-
ling of the ridge was marked by the appearance of new
points of sharp curvature along the ridge as well as a sud-
den decrease in the total elastic energy ES 1 EB of the
sheet. Thus the unbuckled sheet is metastable. We made
no attempt to scale the size of the potential step with the
thickness of the sheet, so while it took nearly 30 steps to
buckle the ridge in thicker sheets, it took only 6 or 8 steps
for the thinnest sheets.

Findings.—The plot in Fig. 2 shows scaling of the to-
tal elastic energy in the cube versus l for ridges at rest
(Cp � 0) and at the buckling threshold. Scaling of the to-
tal elastic energy for the resting configuration is consistent
with a kl21�3 dependence, in agreement with prior theory
and simulation [4,6]. Figure 2 also shows that the elastic
energy measured at the buckling threshold exhibits exactly
the same scaling as on resting ridges. This suggests that
the response of the cube to our tip forcing is completely
determined by the ridge, and that the particular form of our
forcing potential does not destroy the length scaling of the
ridge. The inset in Fig. 2 shows that the energy correction
at the buckling threshold is nearly a constant fraction of
the total ridge elastic energy.

Figure 3 demonstrates the existence of a similarity so-
lution for the ridge shape as a function of tip displacement
D, and thus verifies scaling of the force response. This
figure shows rescalings of the equilibrium value of Cyy

along a line in the material coordinates which bisects the
simulated ridge line. As a consequence of theoretical scal-
ing relations given in Eq. (6), plots of Cyy 3 l1�3 versus
y 3 l21�3 along this line should be independent of l for
unforced ridges. Extending this result to forced ridges, we
found numerically that the rescaled curvature profiles were
also indistinguishable for forced ridges with the same val-
ues of D 3 l0.67. This 0.67 rescaling exponent for D is
very close to the theoretical value of 2�3 derived above.

In our simulation of the diamond shaped region of
Fig. 1, we are free to alter the angles of our boundary
planes so as to alter the dihedral angle a of the resting
ridge. The choice a �

p

2 simulates the cube of Fig. 1.
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When we increased a so that the resting ridge energy
doubled, this led to a doubling of the buckling strength,
and reproduced the scaling with thickness l reported
above for the cube. These additional geometries are still
highly symmetric, but the use of reflective boundaries to
form ridges is a valid way to model the forces that ridges
exert on one another in general, nonsymmetric crumpled
sheets. The range of applicability of simple force scal-
ing to general geometries remains an open question in
this work.

Our simulations show that elastic ridges can impart
buckling strength to a thin membrane much greater than a
smoothly curved membrane. We expect generically crum-
pled membranes to have similar strength. Though we con-
sidered only symmetric loadings, common experience with
buckling objects such as the cube of Fig. 1 suggests that the
strength is not greatly sensitive to the loading symmetry.
We aim to exploit these scaling properties to explain the
buckling phenomena we have observed. We are actively
pursuing a better understanding of the buckling properties
of this distinctive elastic structure.
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