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Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers

A. V. Husakou and J. Herrmann*
Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2a, D-12489 Berlin, Germany

(Received 22 March 2001; published 24 October 2001)

The nonlinear pulse propagation in photonic crystal fibers without slowly varying envelope approxi-
mation is studied using an improved variant of first-order wave equation. Supercontinuum generation is
shown to be caused by a novel mechanism of spectral broadening through fission of higher-order soli-
tons into redshifted fundamental solitons and blueshifted nonsolitonic radiation. Good agreement with
experimental observations is found, and subcycle pulse compression is studied.
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Microstructured photonic crystal fibers (PCFs) [1,2]
have recently attracted significant attention because of
their specifically controlled dispersion and waveguide
properties, such as a shift of the zero-dispersion wave-
length [3] into the visible range and single-mode operation
over a large spectral range [2]. This lead to novel features
in nonlinear processes such as the generation of an ul-
trabroadband continuum with a spectral width exceeding
two octaves for relatively low intensities and long pulses,
recently observed in PCF’s [3] and tapered fibers [4]. Such
a supercontinuum can be applied in different fields such
as spectroscopy and pulse compression, and recently led
to significant advance in frequency metrology and carrier
phase stabilization [5,6]. Up to now, to our knowledge no
theoretical exploration of pulse propagation in PCFs has
yet been done.

In this Letter, we investigate the nonlinear propagation
of femtosecond pulses in PCFs and find that in this sys-
tem the pulse evolution shows new and surprising fea-
tures which cannot be explained by the effect of self-phase
modulation (SPM). We find that supercontinuum genera-
tion for relatively low intensities rests on a new mechanism
of spectral broadening which is related to the evolution and
fission of higher-order solitons near the zero-dispersion
wavelength in PCFs. Because of higher-order dispersion,
every emerging fundamental soliton emits a blueshifted
nonsolitonic radiation phase matched to the soliton. Since
the fundamental solitons have different central frequencies,
the phase-matched radiation is generated at different fre-
quency intervals which are extended up to the UV. For the
description of these effects we derive a first-order equation
for the electric field in forward propagation which is valid
for arbitrary refractive indexes and is not restricted to the
preconditions of the slowly varying envelope approxima-
tion (SVEA) and Taylor expansion for dispersion.

Pulse propagation without special prerequisites of
the SVEA can be studied by the numerical solution of
Maxwells equations with the use of the finite-difference
time-domain method (see [7], and references therein).
However, the large numerical effort in this approach
limits the possible propagation lengths. With the neglect
of back reflection and for a refractive index n�v� close
03901-1 0031-9007�01�87(20)�203901(4)$15.00
to unity, the simpler so-called reduced Maxwell equation
allows numerical solution for much longer propagation
lengths [8,9]. In the following, we show that a more
general first-order equation can be derived which is valid
also for solids and liquids. The wave equation for the
Fourier transformed field E�r, v� �

R`
2` eivtE�r, t� dt,

r � �x, y, z� is given by

≠2E�r, v�
≠z2 1 k�v�2E�r, v� � 2 D�E�r, v�

2 m0v2PNL�r, v� , (1)

where E�r, t� is the electromagnetic field of a wave propa-
gating in z direction, k�v� � n�v�v�c, PNL�r, v� is the
Fourier transform of the nolinear polarization.

Now we use the formal relation ≠2�≠z2 1 k�v�2 �
�≠�≠z 2 ik�v�� �≠�≠z 1 ik�v�� and neglect back
reflection, which leads to the approximation
≠E�r, v��≠z � 2ik�v�E�r, v�. With the introduc-
tion of the moving time coordinates j � z, h � t 2 z�c
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FIG. 1. Pulse spectra calculated by different propagation equa-
tions (a) and PCF parameters (b),(c). Spectra of a 40-TW�cm2,
15-fs pulse after propagating 0.5 mm of a standard fiber calcu-
lated by full Maxwell equations (dashed), and FME (solid) are
presented (a). Nonlinear reduction factor a�v� (solid) and ef-
fective mode area S1 (dashed) are shown in (b). GVD parame-
ters for PCF with L � 1.5 mm, d � 1.3 mm (curve 1), and
bulk silica (curve 2) together with phase mismatch between ra-
diation at frequency v and solitons with central frequencies of
0.85vZD (curve 3) and 0.74vZD (curve 4) are shown (c).
© 2001 The American Physical Society 203901-1
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with ≠�≠z � ≠�≠j 2 c21≠�≠h, we obtain the following
basic equation in Fourier presentation which we denote in
the following as forward Maxwell equation (FME):

≠E�r,v�
≠j

� i
�n�v� 2 1�v

c
E�r, v�

1
i

2k�v�
D�E�r, v� 1

im0vc

2n�v�
PNL�r,v� .

(2)

For linearly polarized waves PNL,x � e0x3E3
x , the fre-

quency dependence of x3 is negligible for wide-gap solids
[10] as well as the Raman process (proved by numerical
calculation). Equation (2) can be numerically solved by the
second-order split-step Fourier method with fourth-order
Runge-Kutta nonlinear steps. For a check of the validity
of this equation, in Fig. 1(a) the numerical solutions for the
exact wave equation (1) (dashed, taken from Ref. [7]), and
the FME (2) (solid) are presented for propagation in stan-
dard fibers made of fused silica in a parameter range where
the SVEA is not valid. Comparison shows that the devia-
tion is negligible in the whole spectral range, in contrast
to the solution of reduced Maxwell equation (not shown
here). The energy transfer to higher modes is weak, and
the electric field in frequency domain can be separated
in the form: E�x, y, z, v� � F�x, y, v�Ẽ�z, v�, where
the transverse fundamental mode distribution F�x, y, v� is
the solution of the Helmholtz equation D�F 1 k�v�2F �
b�v�2F for a PCF with the eigenvalue b�v�. To determine
b�v�, we calculate the effective refractive index neff�v�
for the fundamental mode in the photonic crystal, as done
in Ref. [2]. Then we consider the omitted hole as a core of
a step-index fiber with diameter 2r � 2L 2 d, where L is
the center-to-center distance between the holes (pitch) and
d is the hole diameter, and the surrounding photonic crys-
tal as homogeneous cladding with refractive index neff�v�.
The longitudinal distribution Ẽ�j, v� satisfies an equation
analogous to Eq. (2) with the substitutions n�v�v�c !

b�v�, x3 ! a�v�x3 and without the D�-term. Here
a�v� �

R
S F4�x, y, v� dS�S1 	 0.55 is a nonlinearity re-

duction factor depicted in Fig. 1(b) together with the effec-
tive mode area S1�v� �

R
S F2�x, y, v� dS 	 0.4pr2.

The GVD parameter D � L≠2b�v��≠v2 calculated by
the use of this model for a propagation length L � 15 mm
is presented in Fig. 1(c) by curve 1 for PCF and by curve
2 for bulk silica. The dispersion is anomalous in the range
from 710 to 1700 nm and the relatively large third-order
dispersion (TOD) parameter is positive. The calculated
dispersion is in good agreement with corresponding mea-
surements [3].

First we study pulse propagation in a PCF with L �
1.5 mm, d � 1.3 mm, and the zero dispersion frequency
vZD � 2.66 fs21 �lZD � 710 nm� for pulses with large
duration (FWHM) t0 � 100 fs, a relatively low intensity
I0 � e0n�v�cE2�2 � P0�S1 � 0.6 TW�cm2, and initial
central frequency v0 � 0.85vZD (initial wavelength l0 �
203901-2
830 nm). After about 10 mm the spectrum is seen to
broaden significantly with a larger extension into the vio-
let and a width of more than 500 nm. The theoretical pre-
diction presented in Fig. 2(b) is in good agreement with
experimental measurements for the same input pulse pa-
rameters reported in Ref. [3]. The evolution of the tem-
poral shape presented in Fig. 2(a) shows that the pulse is
successively split into up to finally seven ultrashort peaks
moving with different velocities with shapes which do not
change their form over a long distance. It is impossible
to explain the extremely broad spectrum for the rather
long pulses with a relatively small intensity by the ef-
fect of SPM. The largest spectral broadening by SPM is
given (if the influence of dispersion can be neglected) by
[11] DvSPM�v0 � 1.39n2I0L��t0c� � 0.07 for the input
pulse parameters in Fig. 2, while in Fig. 2, we obtained a
more than 1 order of magnitude broader spectrum. Here
n2 � 3x3��4e0cn2�v�� � 3 3 1024 cm2�TW is the non-
linear refractive index of silica. Additionally, we find a
surprising result if we consider the spectral broadening of
a shorter pulse with the same intensity, as shown in Fig. 3.
As can be seen in Fig. 3, for v0 � 0.85vZD the spec-
tral width of about 50 nm generated by a 17.5 fs pulse is
ten times smaller compared with the 100-fs-pulse case in
Fig. 2. This much narrower spectrum is in direct contrast
to the behavior of SPM-induced broadening, where, cor-
responding the relation for DvSPM�v0, an about 6 times
shorter pulse should yield a correspondingly larger width.
The temporal shape presented in Fig. 3 (top) shows the
formation of a single short spike together with background
radiation. While the spike does not change its form during
propagation from 15 to 75 mm, the background radiation
becomes temporally broadened.

The behavior of supercontinuum generation in PCFs de-
scribed above is qualitatively different from SPM-induced
broadening and requires a careful study of its physical
origin. Note that the considered input frequency 0.85vZD
in Figs. 2 and 3 is in the anomalous region and, therefore,
soliton dynamics plays a crucial role in the propagation.

-2
0
2

-2
0
2

-2
0
2

-2
0
2

-1.5 -1 -0.5 0 0.5 1 1.5

E
(η

) 
(G

V
/m

)

η (ps)

10.5 mm

15 mm

30 mm

75 mm (a)

10-1

10-3

10-1

10-3

10-1

10-3

10-1

10-3

0.5 1 1.5

800 600 450

I(
ω

) 
(a

.u
.)

ω/ωZD

λ (nm)

10.5 mm

15 mm

30 mm

75 mm

φ(
ω

)

0

10π
0

50π

(b)

FIG. 2. Evolution of pulse shape (a) and spectrum (b) for
t0 � 100 fs, I0 � 0.6 TW�cm2 in PCF with L � 1.5 mm, d �
1.3 mm. Spectral phases (dotted) and initial spectrum (dashed,
scaled for clarity here and hereafter) are also presented.
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FIG. 3. Output pulse shapes (a) and spectra (b) for
I0 � 0.6 TW�cm2 , t0 � 17.5 fs for different initial frequen-
cies and propagation length as indicated. Spectral phase
(dotted) are also presented.

The input parameters in Fig. 2 imply the formation
of a higher-order soliton [11] with a soliton number

N �
q

n2I0v0t
2
0L�jDjc � 7.8. Higher-order solitons of

the nonlinear Schrödinger equation (NSE) show periodic
changes with propagation and cannot explain the effects
described above. But here the input wavelength is in the
vicinity of the zero-dispersion wavelength with strong
influence of TOD. Previous studies [12–15] of the
perturbed NSE, taking into account positive TOD and the
self-steepening effect, predict the following behavior: A
higher-order soliton with number N splits into N pulses
with different redshifted central frequencies and different
group velocities [12]. After the fission every pulse emits
nonsolitonic radiation phase matched to the corresponding
pulse [14,15] while simultaneously moving to IR until the
stability is reached [15]. Although the perturbed NSE is
not valid for the propagation phenomena illustrated by
Fig. 2 and the spectral broadening and shifts in standard
fibers are 2 orders of magnitude smaller, the analogous
effects in PCFs can be readily identified as the physical
origin of the supercontinuum generation. The amplitudes
and durations of the separated spikes in Fig. 2(a) satisfy
the relation for a fundamental soliton [11]. To corroborate
the soliton nature of these spikes, we simulate the propa-
gation of every separated pulse over a distance of 75 mm
and do not find any change in shape and spectrum during
propagation. For the same conditions a low-intense pulse
would spread by a factor of 200. All spectral components
of each soliton are phase locked and the solitons preserve
their shape and spectrum in collisions. The calculated
spectrum of the three isolated strongest solitons shows
a redshift with central frequencies at 0.87v0, 0.93v0,
and 0.97v0, and its velocities are close to corresponding
group velocities. The phases of a soliton at frequency
vs and that of the nonsolitonic radiation at v are given
by fs�vs� � n�vs�vsL�c 1 n2IvsL��2c� 2 vsL�ys

and fr�v� � n�v�vL�c 2 vL�ys, correspondingly.
In Fig. 1(c) in curves 3 and 4 the phase difference
Df � fs 2 fr for the strongest and weakest soliton
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with respect to its corresponding nonsolitonic radiation
is presented. The strongest soliton is phase matched
with nonsolitonic radiation at 400 nm and the weakest
at 550 nm. Because of the presence of several solitons
with different frequencies, distinct spectral fractions
arise and therefore a broad spectrum is generated in the
intermediate range between 430 to 550 nm. The spectrum
in the range between 550 and 700 nm arises as a result of
four-wave mixing between the solitons and the blueshifted
continuum. The phase relations discussed above are
supported by the numerically calculated spectral phases
of the pulses f̃. In the dotted lines in Fig. 2 the modified
phase f̃�v� � f�v� 2 vL�1�ys 2 1�c� is plotted. As
can be seen the blueshifted part of radiation with highest
frequencies is indeed phase matched with the most intense
fundamental soliton, and analogous phase relations can be
found for the other solitons. Now the unexpected result in
Fig. 3 for a shorter input pulse but a narrower output spec-
trum can be clearly explained. Since for the smaller pulse
duration the soliton number with N � 1.5 corresponds
to one fundamental soliton, no soliton fission can occur
and only an isolated blueshifted side peak is generated.
Additionally, we consider in the lowest section of Fig. 3
the propagation of a pulse with the same parameters but
different initial frequency v0 � 1.07vZD. Here we see
typical splitting behavior around the zero-dispersion point
similarly as previously found in Ref. [13].

In order to study the crucial role of the specific PCF
dispersion, we consider the propagation of pulses with dif-
ferent initial frequencies presented in Fig. 4. For the pa-
rameters in Fig. 4 with an initial frequency v0 � 0.6vZD
the soliton number is N � 4.3 and, differently from the
previous cases, the magnitude of the negative GVD pa-
rameter D is larger and the TOD parameter is very small.
Therefore in this case SVEA and the prediction of the
NSE should be valid. Indeed the solution presented in
Fig. 4 for v � 0.6vZD can be identified as a bounded
fourth-order soliton of NSE with typical periodic evolution
with the propagation length and splitting into three distinct
peaks which merge again later [11]. At initial frequency
v0 � 1.37vZD in normal dispersion range, spectral broad-
ening typical for SPM can be found, with a spectral width
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FIG. 4. Output pulse shapes (a) and spectra (b) for
L � 15 mm, I0 � 0.6 TW�cm2, t0 � 100 fs and different
initial frequencies as indicated.
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FIG. 5. Output characteristics for a higher input intensity I �
3.3 TW�cm2 and for v0 � 0.92vZD. For short 10-fs pulses the
spectrum (a) and the temporal shape (b) are presented, demon-
strating the supercontinuum generation by soliton fission. The
evolution of spectrum in (d),(c) for 200-fs pulse shows the in-
fluence of four-wave mixing on spectral broadening. Section (e)
exemplifies subcycle pulse compression by a LC SLM. Propaga-
tion length L is 1.5 mm (a), 15 mm (b), 9 mm (c), 4.5 mm (d),
and 9 mm (e).

more than 1 order of magnitude smaller than that ob-
served for higher-order-soliton fission for v0 � 0.85vZD
(Fig. 4).

Finally, we demonstrate in Figs. 5(a) and 5(b) that for
a 10-fs pulse, but with 5.5 times higher input intensity
in a photonic fiber with L � 1.65 mm and d � 1.3 mm
(corresponding lZD � 767 nm and N � 2.87) soliton
fission also can produce supercontinua. The temporal
shape (b) demonstrates fission into two solitons with their
blueshifted emission as the reason for supercontinuum
generation in Fig. 5(a). The spectrum covers the range
500–1300 nm and agrees with the recent experimental
observations [6] for the same parameters. For a longer
200-fs pulse with the same higher intensity, besides soliton
fission spectral broadening by four-wave mixing play role:
First, side peaks emerge at frequencies determined by
four-wave mixing phase-matching condition [Fig. 5(d)],
and then supercontinuum arises as a result of interaction
between the distinct spectral parts [Fig. 5(c)]. In the
normal GVD regime and for short and intense pulses,
SPM is the only reason for ultrawide spectral broadening.
203901-4
Ultrawide spectra, such as in Fig. 5(c), can be used to
produce extremely short pulses if the spectral phase is
compensated. Here we consider a liquid crystal spatial
light modulator (LCSLM) (see, e.g., [7,9] and references
therein). After the LCSLM a subcycle pulse [Fig. 5(e)] is
generated with a duration of 1.8 fs determined from fitted
Gaussian envelope and 0.6 fs FWHM.

In conclusion, it is shown that supercontinuum in PCF’s
by relatively long and low-intense pulses does not rely
on SPM but is caused by a novel mechanism of spectral
broadening due to fission of higher-order solitons.
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