
VOLUME 87, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 12 NOVEMBER 2001

201806-1
Proof of Factorization for B ! Dp
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We prove that the matrix elements of four fermion operators mediating the decays B̄0 ! D1p2 and
B2 ! D0p2 factor into the product of a form factor describing the B ! D transition and a convolution
of a short distance coefficient with the nonperturbative pion light-cone wave function. This is shown to
all orders in as , with corrections suppressed by factors of 1�mb , 1�mc , and 1�Ep . It is not necessary to
assume that the pion state is dominated by the qq̄ Fock state.
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1. Introduction.— In this Letter we present an all orders
proof of factorization for B̄0 ! D1p2 and B2 ! D0p2,
in the limit where the heavy quark masses approach infin-
ity. To be explicit, we distinguish three types of factoriza-
tion. In this Letter we prove the generalized factorization
of matrix elements of four quark operators into a form fac-
tor describing the B ! D transition and a convolution of a
short distance coefficient with the pion wave function [1,2].
A second type of factorization, between hard and infrared
scales, is related to defining the correct effective theory as
explained below. Finally, a third type is factorization theo-
rems between soft and collinear degrees of freedom [3]
which are also discussed.

The B ! Dp decays are mediated by the “full theory”
weak Hamiltonian at a scale m0 � mb

HW �
4GFp

2
V �
udVcb�CF

0 �m0�O0�m0� 1 CF
8 �m0�O8�m0�� .

(1)

The operators are

O0 � �c̄gmPLb� �d̄gmPLu� ,

O8 � �c̄gmPLT
ab� �d̄gmPLT

au� ,
(2)

with PL � �1 2 g5��2. Generalized factorization [1,2]
says that for B ! Dp decays where the light degrees of
freedom in the B can end up in the D, the matrix elements
of O0,8 can be factored according to

�DpjOjB� � NFB!D�0�
Z 1

0
dx T�x, m�fp�x, m� , (3)

where FB!D�0� is a B ! D form factor at q2 � 0, N �
imBEpfp�2, and fp�x,m� is the nonperturbative light-
cone pion wave function [4]. Finally, T�x, m� is a com-
putable short distance coefficient and is a function of the
renormalization scale m, the matching scale m0, as well
as x and z � mc�mb . The earliest form of (3) is so-called
naive factorization where one sets T �x,mb� � 1, dropping
as�mb� corrections. The first argument for naive factor-
ization was based on the idea of color transparency [5].
The physical picture is simply that long wavelength glu-
ons cannot resolve the existence of individual colored ob-
jects in the fast moving pion, and thus decouple. The first
0031-9007�01�87(20)�201806(4)$15.00
attempt to prove naive factorization was by Dugan and
Grinstein in the context of a large energy effective theory
(LEET) [6]. This theory contains soft gluons coupling to
collinear quarks, but in n ? A � 0 gauge this coupling van-
ishes. Thus, no soft gluons can connect the heavy quarks
to the light fermions. However, LEET omits collinear glu-
ons. In [7] the generalized factorization formula in (3) was
shown to be valid at two loops in perturbation theory, in-
cluding collinear gluon interactions. This two-loop convo-
lution was reproduced in a soft-collinear effective theory
in [8]. In this paper this theory combined with heavy quark
effective theory (HQET) is used to extend the proof of fac-
torization to all orders in perturbation theory.

2. Effective theory.—The soft-collinear effective theory
[8–10] describes processes with final state particles having
energy much larger than their mass. For B ! Dp the pion
has large energy, and we take the limit Q ¿ LQCD where
Q is Ep , mb, or mc. Momenta km * Q are integrated out
and contribute to Wilson coefficients in the effective the-
ory. The remaining infrared physics can be described by
including all on-shell degrees of freedom whose momenta
are set by the scales in the process. The heavy mesons
can be described by heavy HQET quarks �hy�, soft quarks
�qs�, and soft gluons �Am

s �, all with momenta of order Ql,
where l � LQCD�Q ø 1. The fast moving pion con-
tains collinear quarks �jn,p� and collinear gluons �Am

n,p�,
with momenta scaling as �p1,p2,p�� � Q�l2, 1, l�. All
four components of Am

n,q give order l0 interactions with
collinear quarks and are responsible for binding the pion
constituents. In addition, ultrasoft gluons �Am

us� with mo-
menta km

us � Ql2 can be emitted by a collinear quark
without changing the scaling of its momenta (i.e., taking
it off its mass shell). The HQET fields are labeled by the
heavy quark velocity y, while collinear quarks and gluons
are labeled by their light-cone direction n and the large
part of their momentum. The same modes for gluons and
quarks also appear in the method of regions [7,11].

To simplify the power counting, fields are rescaled by
powers of l to make all kinetic terms O �l0�. This gives
hy � qs � l3�2, �A1

n,q,A2
n,q,A�

n,q� � �l2, 1, l�, jn,p � l,
Am
s � l, Am

us � l2, and qus � l3. Using topological
identities the power of l for an arbitrary diagram can then
© 2001 The American Physical Society 201806-1
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be determined entirely from the interaction vertices, and
only O �l0� Feynman rules are required. For B ! Dp

a graph is O �ld� with d 1 1 �
P

k��k 2 8�Vus
k 1 �k 2

4� �Vs
k 1 Vc

k 1 Vcs
k ��. Vi

k counts interaction field opera-
tors of type i with scaling lk (Vcs are mixed collinear-soft
vertices). For example, a single h̄y0hyj̄n,p 0jn,p is Vsc

5 � 1,
so d � 0. The couplings of soft gluons to heavy quarks
are identical to HQET, and those of soft quarks and gluons
are simply given by QCD.

3. Preliminaries.—We wish to show that at leading or-
der in l the effective theory Feynman rules leave diagrams
only of the form shown in Fig. 1, so that no nonfactoriz-
able infrared contributions occur. This picture illustrates
how, even in the presence of arbitrary hard interactions,
soft gluons decouple from the pion and collinear gluons
couple to the hard vertex [which gives rise to the convolu-
tion in (3)]. Arguments for the former are fairly standard
but are given for our case. The convolution is more inter-
esting. We begin by showing that in the absence of hard
gluons, collinear gluons completely decouple from the B
and D (naive factorization). We then prove (3) (general-
ized factorization) by using the fact that the form of opera-
tors induced by integrating out hard gluons are constrained
by a symmetry [8,10].

We will assume that the tail end of wave functions are
suppressed by la with a . 0. For the pion, these configu-
rations have a single valence quark carrying off most of
the energy, and for the B and D they contain a spectator
with momentum ¿LQCD. These assumptions can be used
201806-2
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FIG. 1. How the factorization of modes takes place.

to show the power suppression of annihilation and hard
spectator contributions, respectively [7].

4. Naive factorization.—To build some intuition, we
begin by neglecting all hard matching corrections propor-
tional to as�Q�, but work to all orders in the couplings of
the effective theory gluons. In this case we show that the
sum of all diagrams with gluons connecting quarks in the
heavy mesons to those in the pion is zero.

Collinear gluons cannot couple to the heavy quarks since
an HQET quark cannot emit or absorb a collinear gluon
and stay near its mass shell [9]. Instead, the coupling
of collinear gluons to heavy quarks introduces nonlocal
operators, which a priori can still spoil factorization. To
match onto these operators at tree level we follow [10]. An
infinite number of An,q gluons contribute to the matching
onto any operator with a heavy quark as in Fig. 2. Since
Am
n,q � n̄ ? An,qnm�2 1 O �l�, only the n̄ ? An,q gluons

appear at O �l0�. For one such gluon
2gG
mby� 1 q�1 1 mb

�mby 1 q1�2 2 m2
b

n�
2

�n̄ ? A�b � 2g
�n̄ ? An,q1

�
n̄ ? q1

G
�1 1 y��n�
2y ? n

hy � 2g
�n̄ ? An,q1

�
n̄ ? q1

Ghy , (4)
using y�hy � hy . It is important to note that (4) is inde-
pendent of the value of y ? n, and thus independent of the
heavy quark velocity y. This matching can be extended to
include an arbitrary number of collinear gluons [10]X
m,perms

�2g�m

m!

�n̄ ? An,qm � · · · �n̄ ? An,q1�
�n̄ ? q1� · · · �

Pm
i�1 n̄ ? qi�

Ghy 	 WGhy .

(5)

With these definitions, the effective Hamiltonian below
m0 � Q matches at tree level onto the operators

Q
1,5
0,tree � �h̄�c�

y0 G
1,5
h h�b�

y � �j̄�d�
n,p 0G�j�u�

n,p� ,

Q
1,5
8,tree � �h̄�c�

y 0 G
1,5
h �WyTAW�h�b�

y � �j̄�d�
n,p 0G�T

Aj�u�
n,p� ,

(6)

where G
1
h � n��2, G

5
h � n�g5�2, and G� � n̄��1 2 g5��4.

For Qi
0,tree we have used WyW � 1, which encodes the

important observation that collinear gluon interactions
from the b and c quarks cancel identically to all orders
for the color singlet operators. It is not possible to add
additional fields to (6), such as a soft gluon, without
increasing the power of l. A collinear gluon could also
interact with the spectator quark in the B to change it
into a collinear quark. However, this interaction does not
occur at O �l0� because n�jn,p � 0.
We defer to the next section the proof that only soft glu-
ons exchanged between the partons in the B and D con-
tribute, as in Fig. 1. Assuming this, naive factorization is
obtained by showing that �DpjQi

8,treejB� vanishes, while
�Qi

0,tree� factors into the product of matrix elements of two
currents. Let M denote an arbitrary color structure asso-
ciated with soft modes exchanged between color singlet B
and D states. Since all adjoint indices in M are contracted,
the lower color trace in �Qi

8,tree� is

Tr�MWyTAW� � M Tr�WyTAW � ~ Tr�TA� � 0 . (7)

By parity �Q5
0,tree� vanishes. Finally, Qi

0,tree contains
no collinear gluons, so no gluons connect the soft and

qm

q2
q1

+ perms →
Γ qm

q2

q1

FIG. 2. Matching for the order l0 Feynman rule with a heavy
quark and m collinear gluons.
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collinear partons at O �l0�. Thus, �Qi
0,tree� factors

�Dy0pnjQ
1
0,treejBy� �

i
2
EpfpmBF

B!D�0� 1 . . . . (8)

Equation (8) is the product of the pion decay constant
from Epfp � i

2 �pnjj̄n,p 0 n̄�g5jn,pj0� with pm
p � Epnm,

and the B ! D form factor FB!D�0� � 1
2 �mD�mB�1�2 3

�1 1 mB�mD�j�y ? y0�, where j�y ? y0� is the Isgur-
Wise function [12]. The states in (8) are in the effective
theory (with relativistic normalization), and the ellipses
denote terms suppressed by 1�Q or as�Q�. The result in
(8) is exactly the statement of naive factorization.

5. Decoupling of ultrasoft and soft gluons.—By simple
power counting the couplings of ultrasoft gluons to heavy
quarks and soft modes are suppressed by at least one
power of l. For example, h̄yAm

ushy � l, i.e., Vs
5 � 1.

(If ultrasoft heavy quarks are allowed as in [7] then de-
coupling Am

us gluons follows the proof for Am
s gluons be-

low.) To prove factorization, we therefore need to show
that interactions between soft gluons and “collinear” par-
ticles with n̄ ? p � Q decouple. For this section only,
the name “collinear” will be used to refer to any particles
with n̄ ? p � Q. This includes the degrees of freedom
discussed in Sec. 3, as well as off-shell fluctuations with
p2 , Q2 [for example, quarks and gluons with momenta
�k1, k2, k�� � Q�l, 1, l�].

The decoupling of soft gluons from collinear particles
is a standard part of the proof of QCD factorization theo-
rems for processes such as Drell-Yan [3]. The decoupling
depends on only soft n ? As gluons coupling to collinear
fields at O �l0�, and that the soft k2 and k� momenta drop
out of collinear propagators. Applying Ward identities then
factors arbitrary soft attachments out of any time ordered
product of collinear fields.

The power counting can be used to derive that only
n ? A soft (ultrasoft) gluons couple to collinear particles at
l0. (The offshell collinear modes can be included by treat-
ing them as auxiliary fields.) At lowest order we find only
the Feynman rules shown in Fig. 3. We see immediately
that all soft (ultrasoft) gluons couple proportional to nm.

In the effective theory the soft k2 and k� momenta drop
out of collinear propagators. This occurs due to the large
n̄ ? pc component for a collinear momentum pc, so that
�pc 1 k�2 � n̄ ? pcn ? k 1 O �l2�. For ultrasoft gluons
FIG. 3. Order l0 Feynman rules for coupling ultrasoft or soft gluons (spring lines) to “collinear” fermions (thick dashed lines) and
“collinear” gluons (thick spring 1 solid lines) (cf. Sec. 5). As an example, coupling an ultrasoft gluon to two collinear gluons in
background field Feynman gauge one finds Fnl�q1, q2� � 2n̄ ? q1gnl , which is Vc

4 � 1.
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these momenta drop out using the multipole expansion and
equations of motion in the Lagrangian [9].

Now, n ? As gluons couple to a collinear time ordered
product Tc which has dependence only on k1 momenta,
for example, As�k� ? Tc � �n ? As�n̄ ? Tc�k1��2 �
�n ? As�k ? Tc��n ? k�. Thus, QCD Ward identities can
be applied. By induction all soft gluons can be de-
coupled from Tc into eikonal line prefactors [3], S �
P exp�ig

R
dx n ? As�xnm��. For the operator Qi

0, uni-
tarity gives SyS � 1 and the soft gluons decouple. For
Qi

8 one obtains a color structure Ta ≠ WSyTaSWy �
STaSy ≠ WTaWy and the vanishing of the octet matrix
element in (7) is still obtained.

6. Generalized factorization.—To include arbitrary
hard corrections we cannot rely on tree level matching
as was done to determine the operators in (6). Since
momenta $Q are integrated out, the Wilson coefficients
in the effective theory are in general arbitrary functions
of the large n̄ ? pi momenta [10]. In [8] it was pointed
out that this functional dependence is greatly restricted by
a symmetry induced by collinear gauge transformations.
Under this symmetry, jn,p and Am

n,q transform, but hy

does not since collinear gluons do not couple to nearly
on-shell heavy quarks. For B ! Dp the most general
allowed leading order operators are [8]

Q
j
0 � �h̄�c�

y0 G
j
hh

�b�
y � �j̄�d�

n,p 0WC
j
0�P̄1�G�W

yj�u�
n,p� ,

Q
j
8 � �h̄�c�

y0 SG
j
hT

aSyh�b�
y � �j̄�d�

n,p 0WC
j
8�P̄1�G�T

aWyj�u�
n,p� ,

(9)

where j � 1, 5. Helicity ensures that only G� is needed
between the light quarks. The dimensionless Wilson coef-
ficients Ci

a are functions of the renormalization scale m, as
well as mb , mc, y ? y0, and the label operators P̄ and P̄ y

[8]. Since P̄ does not commute with collinear fields, the
short distance Wilson coefficient is conveniently included
as part of the Qi

a’s. In terms of the label operators

W �

" X
perms

exp

√
2g

1

P̄
n̄ ? An,q

!#
, (10)

and Wyjn,p is an invariant under a collinear gauge trans-
formation. The operators P̄ and P̄ y give the sum of labels
on collinear fields to their right and left, respectively, and
are described in detail in [8]. For, e.g., if f is some func-
tion then f�P̄ � �j̄n,p 0Am

n,qA
n
n,rjn,p� � f�n̄ ? q 1 n̄ ? r 1

n̄ ? p 2 n̄ ? p0� 3 �j̄n,p 0Am
n,qA

n
n,rjn,p �. For the B ! Dp
201806-3
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matrix element the combination P̄ y 2 P̄ behaves like a
total derivative, and by momentum conservation gives the
total large momentum label of the effective theory state
[8], P̄ y 2 P̄ � 2Ep . The dependence on the other linear
combination P̄1 � P̄ 1 P̄ y is displayed explicitly in (9).

If we neglect hard corrections (Ci
0 � 1) and leave soft-

collinear couplings in a Lagrangian, then (9) reduces to
(6). This follows from the color identity WyTAW ≠ TA �
TA ≠ WTAWy, which connects the picture where W is
201806-4
obtained by integrating out off-shell heavy quarks to the
picture where W appears by demanding invariance under
collinear gauge symmetry in the effective theory.

Up to power corrections the full theory matrix element
is �DpjCF

a OajB� � �Dy0pnjQbjBy� (summing over a, b).
Therefore, we must simply prove generalized factorization
for the effective theory matrix element. For B ! Dp the
same arguments used in Sec. 4 rule out contributions from
Qi

8 and Q5
0 . For Q1

0 ,
�Dy 0pnjQ
1
0jBy� � mBF

B!D�pnjj̄n,p 0G�WC1
0 �P̄1�Wyjn,pj0�

� mBF
B!D

Z
dv C1

0�v� �pnjj̄n,p0G�Wd�v 2 P̄1�Wyjn,p j0� . (11)

In the first equality we used that collinear gluons do not connect to particles in the heavy meson states, while soft gluons
do not connect to those in the pion. The second equality follows trivially, but illustrates how the noncommutative nature
of the Wilson coefficients and fields leads to a convolution. In our formulas hard corrections to the B ! D form factor
are contained in C1

0 .
Next we show that the matrix element in the last line of (11) is the Fourier transform (FT) of

�p2
n �pp �jj̄�d�

n � y�n̄�g5W � y, 2y�j�u�
n �2y�j0� 	 22ifpEp

Z 1

0
dx fp�x, m�ei2yEp �2x21�, (12)

where the FT of jn� y� is jn,p , W � y, 2y� is the path ordered eikonal line from positions 2yn̄m to yn̄m, and fp�x, m�
is the light-cone pion wave function. Since the FT of �j̄n� y�W � y, `�� with respect to R is j̄n,pWdP̄ y,R , the Fourier
transform of (12) isZ dy

2p
eiv�2y��pnjj̄n� y�G�W � y, 2y�jn�2y�j0� �

Z dy
2p

e2ivy�j̄n� y�W � y,`�G�W
y�2y, `�jn�2y��

�
Z dy

2p

X
R,T

e2ivyei�R1T�y�j̄n,p 0G�WdP̄ y,RdP̄ ,TW
yjn,p�

�
X
R,T

d�v 2 T 2 R� �j̄n,p 0G�WdP̄ y,RdP̄ ,TW
yjn,p�

� �pnjj̄n,p 0G�Wd�v 2 P̄1�Wyjn,pj0� . (13)

Thus, the convolution in Eq. (11) isZ
dv C1

0 �m, v� �pn jj̄n,p 0G�Wd�v 2 P̄1�Wyjn,p j0� �
i

2
fpEp

Z dy

2p
dv

Z 1

0
dx eiy�2�2x21�Ep2v�C1

0 �m, v�fp�x, m�

�
i
2
fpEp

Z 1

0
dx C1

0 ���m, 2�2x 2 1�Ep ���fp�x, m� �
i
2
fpEp

Z 1

0
dx T�x, m�fp�x, m� , (14)
where T�x, m� 	 C1
0���m, �4x 2 2�Ep���.

Combining (11) and (14) we arrive at

�Dy 0pnjQ
1
0 jBy� � NFB!D�0�

Z 1

0
dx T�x, m�fp�x, m� .

This is our final result, and it reproduces the generalized
factorization formula in Eq. (3). Note that it was not nec-
essary to set the transverse momenta of partons to zero. It
should be fairly obvious that this proof also goes through
for other class I decays. Q.E.D.
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