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We introduce the concept of efficiency of a network as a measure of how efficiently it exchanges
information. By using this simple measure, small-world networks are seen as systems that are both
globally and locally efficient. This gives a clear physical meaning to the concept of “small world,”
and also a precise quantitative analysis of both weighted and unweighted networks. We study neural
networks and man-made communication and transportation systems and we show that the underlying
general principle of their construction is in fact a small-world principle of high efficiency.
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We live in a world of networks. In fact any complex
system in nature can be modeled as a network, where ver-
tices are the elements of the system and edges represent the
interactions between them. Coupled biological and chem-
ical systems, neural networks, social interacting species,
computer networks, or the Internet are only a few such ex-
amples [1]. Characterizing the structural properties of the
networks is then of fundamental importance to understand
the complex dynamics of these systems. A recent paper [2]
has shown that the connection topology of some biologi-
cal and social networks is neither completely regular nor
completely random. These networks, there named “small
worlds,” in analogy with the concept of small-world phe-
nomenon developed 30 years ago in social psychology [3],
are in fact highly clustered like regular lattices, yet have
small characteristic path lengths like random graphs. The
original paper triggered much interest in the study of the
properties of small worlds (see Ref. [4] for a recent re-
view). Researchers have focused their attention on differ-
ent aspects: study of the inset mechanism [5–7], dynamics
[8] and spreading of diseases on small worlds [9], and ap-
plications to social networks [10,11] and to the Internet
[12,13]. In this Letter we introduce the concept of effi-
ciency of a network, measuring how efficiently informa-
tion is exchanged over the network. By using efficiency,
small-world networks are seen as systems that are both
globally and locally efficient. This formalization gives a
clear physical meaning to the concept of small world, and
also allows a precise quantitative analysis of unweighted
and weighted networks. We study several systems, such as
brains, communication, and transportation networks, and
show that the underlying general principle of their con-
struction is in fact a small-world principle, provided at-
tention is taken not to ignore an important observational
property (closure).

We start by reexamining the original formulation pro-
posed in Ref. [2]. There, a generic graph G with N
vertices and K edges is considered. G is assumed to
be unweighted, i.e., edges are all equal, sparse �K ø
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N �N 2 1��2�, and connected; i.e., there exists at least
one path connecting any two vertices with a finite num-
ber of steps. G is therefore represented by simply giving
the adjacency (or connection) matrix, i.e., the N 3 N
matrix whose entry aij is 1 if there is an edge joining
vertex i to vertex j and is 0 otherwise. An important
quantity of G is the degree of vertex i, i.e., the num-
ber ki of edges incident with vertex i (the number of
neighbors of i). The average value of ki is k � 2K�N .
Once �aij� is given it can be used to calculate the ma-
trix of the shortest path lengths dij between two generic
vertices i and j. The fact that G is assumed to be con-
nected implies that dij is positive and finite ;i fi j. In
order to quantify the structural properties of G, Ref. [2]
proposes to evaluate two different quantities: the char-
acteristic path length L and the clustering coefficient C.
L is the average distance between two generic vertices
L �

1
N�N21�

P
ifij dij , and C is a local property defined

as C �
1
N

P
i Ci. Here Ci is the number of edges ex-

isting in Gi , the subgraph of the neighbors of i, divided
by the maximum possible number ki�ki 2 1��2. In [2] a
simple method is considered to produce a class of graphs
with increasing randomness. The initial graph G is taken
to be a one-dimensional lattice with each vertex con-
nected to its k neighbors and with periodic boundary
conditions. By rewiring each edge at random with proba-
bility p, G can be tuned in a continuous way from a reg-
ular lattice �p � 0� into a random graph �p � 1�. For
the regular lattice we expect L � N�2k and a high clus-
tering coefficient C � 3�4�k 2 2���k 2 1�, while for a
random graph L � lnN� ln�k 2 1� and C � k�N [5,14].
Although in the two-limit cases a large C is associated
with a large L and vice versa a small C to a small L,
the numerical experiment reveals an intermediate regime
at small p where the system is highly clustered like reg-
ular lattices, yet having small characteristics path lengths
like random graphs. This behavior is there called small
world and it is found to be a property of some analyzed
social and biological networks [2].
© 2001 The American Physical Society 198701-1
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Now we propose a more general setup to investigate
real networks. We will show that (i) the definition of
small-world behavior can be given in terms of a single
variable with a physical meaning, the efficiency E of the
network; (ii) 1�L and C can be seen as first approximations
of E evaluated, respectively, on a global and a local scale;
and (iii) we can drop all the restrictions on the system, such
as unweightedness, connectedness, and sparseness.

We represent a real network as a generic weighted (and
possibly even nonsparse and nonconnected) graph G.
Such a graph needs two matrices to be described: the
adjacency matrix �aij�, defined the same as for the un-
weighted graph, and the matrix ��ij� of physical distances.
The number �ij can be the space distance between the
two vertices or the strength of their possible interaction:
we suppose �ij to be known even if in the graph there is
no edge between i and j. For example, �ij can be the
geographical distance between stations in transportation
systems (in such a case �ij respects the triangle equality,
though this is not a necessary assumption), the time taken
to exchange a packet of information between routers in
the Internet, or the inverse velocity of chemical reactions
along a direct connection in a biological system. Of
course, in the particular case of an unweighted graph
�ij � 1 ; i fi j. The shortest path length dij between
two generic points i and j is the smallest sum of the
physical distances throughout all the possible paths in
the graph from i to j. The matrix �dij� is therefore
calculated by using the information contained both in
matrix �aij� and in matrix ��ij�. We have dij $ �ij ; i, j,
the equality being valid when there is an edge between
i and j. Let us now suppose that the system is parallel,
i.e., every vertex sends information concurrently along
the network, through its edges. The efficiency eij in
the communication between vertices i and j can then
be defined to be inversely proportional to the shortest
distance: eij � 1�dij ; i, j. When there is no path in
the graph between i and j, dij � 1` and, consistently,
eij � 0. The average efficiency of G can be defined as

E�G� �

P
ifij[G eij

N �N 2 1�
�

1
N�N 2 1�

X

ifij[G

1
dij

. (1)

To normalize E we consider the ideal case Gid in which the
graph G has all the N�N 2 1��2 possible edges. In such
a case the information is propagated in the most efficient
way since dij � �ij ; i, j, and E assumes its maximum
value E�Gid� �

1
N�N21�

P
ifij[G

1
lij

. The efficiency E�G�
considered in the rest of the paper is always divided by
E�Gid� and therefore 0 # E�G� # 1. Although the equal-
ity E � 1 is valid when there is an edge between each
couple of vertices, real networks can reach a high value
of E.

In our formalism, we can define the small-world behav-
ior by using the single measure E to analyze both the local
and the global behavior, rather than two different variables
L and C. The quantity in Eq. (1) is the global efficiency
of G and we therefore refer to it as Eglob. Since E is also
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defined for a disconnected graph we can characterize the
local properties of G by evaluating for each vertex i the
efficiency of Gi , the subgraph of the neighbors of i. We
define the local efficiency as the average efficiency of the
local subgraphs, Eloc � 1�N

P
i[G E�Gi�. This quantity

plays a role similar to the clustering coefficient C. Since
i ” Gi, the local efficiency Eloc reveals how much the
system is fault tolerant, thus it shows how efficient the
communication is between the first neighbors of i when i
is removed [15]. The definition of small world can now
be rephrased and generalized in terms of the information
flow: small-world networks have high Eglob and Eloc, i.e.,
are very efficient in global and local communication. This
definition is valid both for unweighted and for weighted
graphs, and can also be applied to disconnected and/or
nonsparse graphs.

It is interesting to see the correspondence between our
measure and the quantities L and C of [2] (or, correspond-
ingly, 1�L and C). The fundamental difference is that
Eglob is the efficiency of a parallel system, where all the
nodes in the network concurrently exchange packets of in-
formation (such as all the systems in [2], for example),
while 1�L measures the efficiency of a sequential system
(i.e., only one packet of information goes along the net-
work). 1�L is a reasonable approximation of Eglob when
there are no huge differences among the distances in the
graph, and this can explain why L works reasonably well
in the unweighted examples of [2]. But, in general, 1�L
can significantly depart from Eglob. For instance, in the
Internet, having a few computers with extremely slow con-
nections does not mean that the entire Internet efficiency
is diminished: in practice, the presence of such very slow
computers goes unnoticed, because the other thousands of
computers are exchanging packets among them in a very
efficient way. Here 1�L would give a number very close
to zero (strictly 0 in the particular case when a computer
is disconnected from the others and L � 1`), while Eglob
gives the correct efficiency measure of the Internet. We
now turn our attention to the local properties of a network.
C is only one among the many possible intuitive measures
[10] of how well connected a cluster is. It can be shown
that, when in a graph, most of its local subgraphs Gi are
not sparse, then C is a good approximation of Eloc. In
summary, there are not two different types of analyses to
be done for the global and local scales, just one with a
very precise physical meaning: the efficiency in transport-
ing information.

We now illustrate the onset of the small world in an
unweighted graph by means of the same example used
in [2]. A regular lattice with N � 1000 and k � 20
is rewired with probability p, and Eglob and Eloc are
reported in Fig. 1 as functions of p [16]. For p � 0
we expect the system to be inefficient on a global scale
�Eglob � k�N log�N�K�� but locally efficient. The situa-
tion is inverted for the random graph. In fact, at p � 1,
Eglob assumes a maximum value of 0.4, meaning 40% ef-
ficiency of the ideal graph with an edge between each pair
198701-2
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FIG. 1. Global and local efficiency for the graph example con-
sidered in [2]. A regular lattice with N � 1000 and k � 20 is
rewired with probability p. The small-world behavior results
from the increase of Eglob caused by the introduction of only a
few rewired edges (short cuts), which on the other side do not
affect Eloc. At p � 0.1, Eglob has almost reached the value of
the random graph, though Eloc has diminished only by very little
from the value of 0.82 of the regular lattice. Small worlds have
high Eglob and Eloc.

of vertices. This occurs at the expense of the fault tol-
erance �Eloc � 0�. The small-world behavior appears for
intermediate values of p. It results from the fast increase
of Eglob (for small p we find a linear increase of Eglob in
the logarithmic horizontal scale) caused by the introduc-
tion of only a few rewired edges (short cuts), which on
the other side do not affect Eloc. At p � 0.1, Eglob has
almost reached the maximum value of 0.4, though Eloc

has diminished only very little from the maximum value
of 0.82. For an unweighted case the description in terms
of network efficiency resembles the approximation given
in [2]. In particular we have checked that a good agree-
ment with curves L�p� and C�p� [2] can be obtained by
reporting 1�Eglob�p� and Eloc�p�. Of course in such an ex-
ample the short cuts connect at almost no cost vertices that
would otherwise be much farther apart (because �ij � 1
; i fi j). On the other hand, this is not true when we
consider a weighted network. As real networks, we first
consider different examples of natural systems (neural net-
works), and then we turn our attention to man-made com-
munication and transportation systems.

(a) Neural networks.—Thanks to recent experiments,
neural structures can be studied at several levels of scale.
Here we focus first on the analysis of the neuroanatomi-
cal structure of the cerebral cortex, and then on a simple
nervous system at the level of wiring between neurons.
The anatomical connections between cortical areas are of
particular importance for their intricate relationship with
the functional connectivity of the cerebral cortex [18]. We
analyze two databases of cortico-cortical connections in
the macaque and in the cat [19]. Table I indicates that the
198701-3
TABLE I. Macaque and cat cortico-cortical connections [19].
The macaque database contains N � 69 cortical areas and K �
413 connections [20]. The cat database has N � 55 cortical
areas (including hippocampus, amygdala, entorhinal cortex, and
subiculum) and K � 564 (revised database and cortical parcel-
lation from [21]). The nervous system of C. elegans consists
of N � 282 neurons and K � 2462 links which can be either
synaptic connections or gap junctions [24].

Eglob Eloc

Macaque 0.52 0.70
Cat 0.69 0.83

C. elegans 0.46 0.47

two networks are small worlds [16]: they have high Eglob,
52% and 69% of the efficiency of the ideal graph with an
edge between each pair of vertices (just slightly smaller
than the best possible values of 57% and 70% obtained in
random graphs), and high Eloc, 70% and 83%, i.e., high
fault tolerance [22]. These results indicate that in the neu-
ral cortex each region is intermingled with the others and
grows following a perfect balance between local necessi-
ties (fault tolerance) and wide-scope interactions. Next we
consider the neural network of C. elegans, the only case of
a nervous system completely mapped at the level of neu-
rons and chemical synapses [23]. Table I shows that this
is also a small-world network: C. elegans achieves 50%
of both global and local efficiency. Moreover the value of
Eglob is similar to Eloc. This is a difference from cortex
databases, where fault tolerance is slighty privileged with
respect to global communication.

(b) Communication networks.—We have considered
two of the most important large-scale communication
networks present today: the World Wide Web (WWW)
and the Internet. Table II shows that they have relatively
high values of Eglob (slightly smaller than the best possi-
ble values obtained for random graphs) and Eloc. Despite
the fact that the WWW is a virtual network and the Inter-
net is a physical network, at a global scale they transport
information essentially in the same way (as their Eglob’s
are almost equal). At a local scale, the bigger Eloc in
the WWW case can be explained both by the tendency
in the WWW to create Web communities (where pages
talking about the same subject tend to link to each other)
and by the fact that many pages within the same site are
often quickly connected to each other by some root or
menu page.

(c) Transport networks.—Differently from previous
databases, the Boston subway transportation system

TABLE II. Communication networks. Data on the World Wide
Web from http://www.nd.edu/~networks contains N � 325 729
documents and K � 1 090 108 links [12], while the Internet
database is taken from http://moat.nlanr.net and has N � 6474
nodes and K � 12 572 links.

Eglob Eloc

WWW 0.28 0.36
Internet 0.29 0.26
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(MBTA) can be better described by a weighted graph,
the matrix ��ij� being given by the geographical distances
between stations. If we consider the MBTA as an un-
weighted graph we find that it is apparently neither locally
nor globally efficient (see Table III). On the other hand,
when we take the geographical distances into account,
we obtain Eglob � 0.63: this shows the MBTA is a very
efficient transportation system on a global scale, only 37%
less efficient than the ideal subway with a direct tunnel
from each station to the others. Even in the weighted
case Eloc stays low (0.03), indicating poor local behavior:
differently from a neural network, the MBTA is not fault
tolerant and damage in a station will dramatically affect
the connection between the previous and the next station.
The difference with respect to neural networks comes
from different needs and priorities in the construction
and evolution mechanism: when we build a subway
system, the priority is given to the achievement of global
efficiency, and not to fault tolerance. In fact a temporary
problem in a station can be solved by other means: for
example, walking or taking a bus from the previous
to the next station. That is to say, the MBTA is not a
closed system. It can be considered, after all, a subgraph
of a wider transportation network. This property is of
fundamental importance when we analyze a system: while
global efficiency is without doubt the major characteristic,
it is closure that somehow leads a system to have high
local efficiency (without alternatives, there should be high
fault tolerance). The MBTA is not a closed system, and
thus this explains why, unlike in the case of the brain, fault
tolerance is not a critical issue. Indeed, if we increase
the precision of the analysis and change the MBTA
subway network by taking into account, for example, the
Boston bus system, this extended transportation system
comes back to be a small-world network (Eglob � 0.72,
Eloc � 0.46). Qualitatively similar results, confirming the
similarity of construction principles, have been obtained
for other undergrounds and for a wider transportation
system consisting of all the main airplane and highway
connections throughout the world [25]. Considering all
the transportation alternatives available at that scale makes
again the system closed (there are no other reasonable
routing alternatives), and so fault tolerance comes back as
a leading construction principle.

In summary, the introduction of the efficiency measure
allows us to give a definition of small world with a clear
physical meaning, and provides important hints on why

TABLE III. The Boston underground transportation system
(MBTA) consists of N � 124 stations and K � 124 tunnels.
The matrix ��ij� of the spatial distances between stations, used
for the weighted case, has been calculated using databases from
http://www.mbta.com/ and the U.S. National Mapping Division.

Eglob Eloc

MBTA (unweighted) 0.10 0.006
MBTA (weighted) 0.63 0.03
198701-4
the original formulas of Ref. [2] work reasonably well in
some cases and where they fail. The efficiency measure
allows a precise quantitative analysis of the information
flow, and works both in the unweighted abstraction and in
the more realistic assumption of weighted networks. Fi-
nally, analysis of real data indicates that various existing
(neural, communication, and transport) networks exhibit
small-world behavior (even, in some cases, when their un-
weighted abstractions do not), substantiating the idea that
the diffusion of small-world networks can be interpreted
as the need to create networks that are both globally and
locally efficient.
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