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Full Counting Statistics of Electron Transfer between Superconductors
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We present an extension of the Keldysh-Green’s function method, which allows one to calculate the
full distribution of transmitted particles through a mesoscopic superconductor. The method is applied
to the statistics of supercurrent in short contacts. If the current is carried by Andreev bound states the
distribution corresponds to switching between long trains of electrons going in opposite directions. For
weak (gapless) superconductors or tunnel junctions we find that at low temperatures the distribution has
negative “probabilities.” Accounting for the quantum mechanical nature of the measuring device shows
that these negative values can indeed be measured.
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Coherent charge transfer between superconductors (S),
supercurrent, is essentially a quantum mechanical process.
Although superconducting junctions are commonly used,
the statistical properties of the charge transfer involved in
the supercurrent are not yet completely understood. In
view of recent attempts to use the coherence of supercon-
ductors to build quantum bits [1], it is necessary to reveal
the basic limitations on this coherence (if there are any).
Additionally, the problem of the statistics of transferred
charge in a quantum process is of fundamental interest. It
is related to the understanding of the measurement process
and the interpretation of its outcome.

Recently the current noise exhibited in SNS junctions,
where N is a diffusive normal metal, was addressed experi-
mentally [2]. The experimental results show a giant excess
noise in the low temperature and voltage regime in those
samples, in which at the same temperature a coherent cou-
pling through the normal metal was measured. This is in
accordance with theoretical predictions for the shot noise
in short contacts [3]. This may hint to the importance of
an understanding of the statistical properties of the super-
current in such junctions. The equilibrium noise proper-
ties have been studied in [4] and [5]. Further experimental
progress in the fabrication of controllable single-channel
junctions is to be expected in the near future. This will
shed more light on the fundamental statistical properties
of charge transfer between superconductors.

We will make use of the so-called full counting statis-
tics (FCS), originally introduced to calculate the distri-
bution of transmitted charge through a contact between
normal metals [6]. This theory allows one to find the
cumulant generating function (CGF) S�x�, from which
the distribution of transmitted charge follows via P�N � �R

dx exp�2S�x� 2 iNx�. It is tempting (and has been
done so far) to interpret P�N� as the probability that N
charges have been transferred through the contact during
the time of observation. We will show below that this in-
terpretation is strict only for normal constrictions. For su-
perconducting constrictions the distribution also depends
on the phase difference f. It turns out that P�N , f� can
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also take negative values, which hampers such interpreta-
tion. This is related to the fact that the phase and num-
ber of charges transferred can be regarded as canonically
conjugated variables. Still P�N , f� provides a complete
description of all charge transfer processes and can be ex-
tracted from the results of measurements.

The most powerful and general method of calculat-
ing transport properties of mesoscopic conductors is the
nonequilibrium Green’s function approach (see [7]). It
was shown in [8] that this approach can be generalized
to access FCS. In this Letter we extend the approach to
superconductors. This allows us to obtain the FCS of an ar-
bitrary mesoscopic conductor at all temperatures and volt-
ages. The CGF is derived for a contact which is fully
characterized by an ensemble of transmission eigenvalues
�Tn�. We evaluate the FCS of supercurrent in two generic
cases. First, we find the distribution of transmitted charge
of a single-channel contact between two gapped supercon-
ductors. Here the current is carried by phase dependent
Andreev bound states and, as shown by our analysis, con-
forms with the switching picture [5]. The two bound states
carrying current in opposite directions are alternately occu-
pied and charges are transferred in “long trains,” which re-
flect the coherent nature of the supercurrent. In the second
case we calculate the CGF of a contact between two weak
superconductors. The resulting CGF corresponds to the
tunnel limit for gapped superconductors and can be related
to the effective Keldysh action of a Josephson junction dis-
cussed in detail in Ref. [9]. The standard interpretation [6]
of the CGF leads in the low temperature regime to negative
“probabilities” P�N , f�. Negative values of P�N ,f� occur
because of an attempt to interpret the quantum mechanical
phenomenon of supercurrent with classical means. If we
account for the quantum mechanical nature of the measur-
ing device, we can resolve the paradox and specify how
P�N , f� can be measured.

To be specific, let us now introduce our model sys-
tem, which is depicted in Fig. 1. A mesoscopic conductor
is placed between two reservoirs. The counting field x

is introduced on an arbitrary cross section in one of the
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FIG. 1. Sketch of the system. Two reservoirs �1, 2� are con-
nected to a mesoscopic conductor M. The counting field x is
chosen nonzero on the cross section C in reservoir 1.

reservoirs and couples to the operator of current through
that cross section. It follows from the definition of the cu-
mulants that the CGF can be found from

e2S�x,f� � �T e
i�x�2�

Rt0

0
Î�t� dt

T̃ e
i�x�2�

Rt0

0
Î�t� dt	 . (1)

Here T �T̃ � denotes the (anti)time ordering operator. Î
denotes the current operator

R
d3x Ĉyt̄3� p�m�Ĉy===F�x�,

where Ĉ is the usual Nambu spinor field operator and t̄3 is
a matrix in Nambu space. ===F is chosen such that the spa-
tial integration is restricted to the cross section and yields
the total current. The counting field parametrized in this
way can now be incorporated into the boundary condition
imposed by the reservoir onto the mesoscopic conductor
[8]. That is, the reservoir Green’s function effectively
takes the form

Ǧ1�x, f� � e�i�2�xťK Ǧ1�f�e2�i�2�xťK . (2)

Here Ǧ1�f� is the reservoir Green’s function at supercon-
ducting phase f in the absence of the counting field and
ťK � ŝ3t̄3 a matrix in Keldysh(ˆ)-Nambu( ) space. Now
the counting field is included in the boundary condition for
the Keldysh-Nambu matrix Green’s functions provided by
the left reservoir. Inside the system of interest the trans-
port properties are described by quasiclassical Eilenberger
equations [10], applicable if the system size exceeds the
Fermi wavelength. It is important that Ǧ�x, f� still obeys
the quasiclassical normalization condition Ǧ2�x, f� � 1̌.

In certain cases the action S�x, f� can be found quite
generally. One example is a constriction shorter than the
coherence length, which is fully characterized by a set
of transmission eigenvalues �Tn�. The counting field ma-
nipulates the matrix structure of the Green’s functions in
Keldysh-Nambu space. To find the transport properties
one should therefore use expressions, which respect the
full matrix structure. It was noted in [11] that a convenient
way to do this is to use a “matrix current,” which is con-
served in short contacts. The matrix current is formed with
the current operator and the corresponding matrix elements
of the Green’s functions. Physical currents are related to
certain components of the matrix current. For our pur-
pose here, we need the matrix current in a short contact.
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The matrix current was derived in [11] in the absence of
the counting field. The counting field does not change the
matrix structure of that result. So we can use it just by
including the x dependence of the Green’s functions and
write

Ǐ�x, f� �
1

2p

X
n

Z
dE

Tn�Ǧ1�x, f�, Ǧ2�
4 1 Tn��Ǧ1�x, f�, Ǧ2� 2 2�

.

(3)

The action can then be found from the relation �≠�≠x� 3

S�x, f� � 2it0 Tr���ťKǏ�x, f����. Using the fact that
�Ǎ, �Ǎ, Ǧ2�� � 0 for all matrices with Ǎ2 � 1̌, it is easy to
verify that under the trace in (3) �≠�≠x� �Ǧ1�x, f�, Ǧ2� �
iťK�Ǧ1�x, f�, Ǧ2�. We can therefore integrate Eq. (3)
with respect to x and obtain

S�x,f� �
2t0

2p

X
n

Z
dE

3 Tr ln�4 1 Tn��Ǧ1�x, f�, Ǧ2� 2 2�� . (4)

Equation (4) is very general. It contains the statistical
properties of all types of superconducting constrictions.
For instance, the FCS of an SN contact [12] can easily
be obtained from (4).

In the rest of the paper we will study equilibrium noise
and statistics of systems with two superconducting con-
tacts. We will distinguish two generic cases. The first
will be a single-mode contact of arbitrary transparency be-
tween two fully gapped superconductors. In the second
case we treat a contact between two weak superconduc-
tors, or, which is equivalent, a tunnel contact. The channel
summation in the action (4) is then a trivial summation
over transparencies. In the following derivation we limit
the discussion to a single channel of transmission T1 and
identical reservoirs at equilibrium. To be specific, we con-
sider the Green’s functions of the reservoirs

ǦS �
R̄ 1 Ā

2
1

Ā 2 R̄
2

µ
2h �1 2 h�

�1 1 h� h

∂
. (5)

Here R̄�Ā� �E� are retarded and advanced Green’s func-
tions of the banks and h�E� � tanh�E�2T � accounts for
the equilibrium distribution at a temperature T . The
phase difference f is introduced by setting Ǧ1�f� �
exp�ift̄3�2�ǦS exp�2ift̄3�2� and Ǧ2 � ǦS . Advanced
and retarded functions in (5) possess the structure
R̄�Ā� � gR,At̄3 1 fR,At̄1 fulfilling the normalization
condition f2 1 g2 � 1. They depend on energy and the
superconducting order parameter D. Their precise forms
will be defined below.

The trace in the action can be evaluated, and we obtain
the main result of this paper

S�x, f� �
2t0

p

Z
dE ln

"
1 1

2X
n�22

An�f�
Q�f�

�einx 2 1�

#
.

(6)
Introducing q � �1 2 gRgA� �1 2 h2� 1 fRfA�1 1 h2�
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the coefficients may be written as

A62 �
T 2

1

64
q2, (7)

A61 �
T1

4
q 2

T 2
1

16
q

∑
q 2 4fRfA sin2 f

2

∏

1
T1

8

∑
� fR 1 fA�h cos

f

2

7 i� fR 2 fA� sin
f

2

∏2

, (8)

Q �

∑
1 2 T1f2

R sin2

µ
f

2

∂∏ ∑
1 2 T1f2

A sin2

µ
f

2

∂∏
.

(9)

The interpretation of the different terms is analogous to
that given in [12]. A coefficient A6n is related to events
in which a charge n is transferred to the right (left). The
presence of terms, which describe charge transfers of 2e,
is a consequence of superconducting correlations. The
interpretation of these terms as probabilities stems from the
comparison with the case of binomial statistics (see [6]).
However, in our case Q has roots for the Andreev bound
state energies. The coefficients A6n�Q can become larger
than 1, inhibiting an interpretation as probabilities. To find
the statistics of the charge transfer, we have to specify the
system further.

Gapped superconductors.— If the two leads are gapped
like BCS superconductors, the spectral function are given
by fR,A � iD���E 6 id�2 2 D2�1�2 and gR,A follows
from normalization. Here d is a broadening parameter,
which accounts for the finite lifetime of the Andreev bound
states due to, e.g., phonon scattering. The supercurrent
is solely carried by Andreev bound states with energies
6D�1 2 T1 sin2f�2�1�2 
 6EB�f�. The importance of
these bound states can be seen from the coefficient Q (9).
It may become zero and will thus produce singularities in
the action [13]. The broadening d shifts the singularities
of Q into the complex plane and allows an expansion
of the coefficients in Eqs. (7)–(9) close to that energy.
Performing the energy integration the action results in

S�x, f� � 22t0d

q
1 2 I2

1 �f�x2�4d2 2 ixĪ1�f��d ,
(10)

where I1�f� � D2T1 sin�f��2EB�f� is the supercur-
rent carried by one bound state and Ī1�f� � I1�f� 3

tanh�EB�2T � is the average current through the contact.
In deriving (10) we have also assumed that x ø 1. This
corresponds to a restriction to “long trains” of electrons
transferred, and the discreteness of the electron transfer
plays no role here. Fast switching events become less
probable at low temperatures and are neglected here. In the
saddle point approximation at low temperatures g 
 1�
cosh�EB�2T� ø 1 we find for the current distribution
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P� j, f� �
1
g

e2dt0�g
p

12j2�f�2j�f�
p

12g2 �, (11)

for j j�f�j # 1 and zero otherwise. Here we have ex-
pressed the transferred charge in terms of the current nor-
malized to the zero temperature supercurrent: j�f� �
I�I1�f�. The current is related to the particle number
by N � It0. At zero temperature Eq. (11) approaches
P� j,f� ! d�j 2 1�, which follows from a direct calcu-
lation. Thus, at zero temperature the current is noiseless
and the distribution (11) at finite temperature confirms the
picture of switching between Andreev states which carry
current in opposite directions, suggested in Ref. [5]. These
results are valid, as long as the bound states are well sepa-
rated from each other and from the continuum. Otherwise
the statistics are similar to the gapless case.

Tunnel junction/gapless superconductors.—Let us now
consider the supercurrent statistics between two weak su-
perconductors, where the Green’s functions can be ex-
panded in D for all energies. One can see that this is
equivalent to the tunneling limit (�Tn� ø 1) of Eq. (4). We
also return the many channel situation here. Expanding the
action (4) to lowest order and using that the counting rota-
tion can be written as exp�ixťK �2� � 1

2 �eix�2�1 2 ťK� 1

e2ix�2�1 1 ťK �� we find

S � 2t0�iIs�f� sinx 1 Ps�f� �cosx 2 1�� . (12)

In short, the full statistics are expressed in terms of super-
current Is�f� and noise Ps�f�. In equilibrium using (5)

Is�f� � 2
G
4

Re
Z

dE Tr�t̄3�R̄1�f�, R̄2��h , (13)

Ps�f� � 2
G
4

Re
Z

dE Tr�t̄3Ā1�f�t̄3R̄2� �1 2 h2� .

(14)

Here G � �1�p�
P

Tn is the normal state conductance of
the contact. The equivalence of this result to the limit
of gapless superconductors follows from an expansion of
(4)–(9) to orders f2.

Equation (14) shows that Ps vanishes at zero tempera-
ture, since h�T � 0� � 61, whereas Is vanishes at Tc.
Therefore, there is some crossover temperature below
which Ps , Is. In this limit the action possesses no saddle
point anymore, and by expansion in powers of exp�ix�
it follows that P�N, f� becomes negative. Obviously
this questions the direct interpretation of P�N, f� as a
probability. Thus, we are forced to have a closer look on
what P�N, f� actually is.

To clarify this issue, we make use of the recent results
presented in [14], where it was shown that the interpreta-
tion of P�N, f� is intimately related to the way the mea-
surement is performed. We assume a simple model of a
measuring device: a capacitor of infinite capacitance that
stores the charge passed through the constriction; i.e., the
charge operator q̂ is related to the current operator through
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the constriction by �̂q � Î . The quantum mechanical treat-
ment of this device involves its density matrix r�q, q0�.

In [14] the relation between initial and final density ma-
trices of the device was obtained. This can be expressed
in terms of the density matrix in Wigner representation,
r�x, q�, x being the canonical conjugate of q. It reads

rf �x, q� �
X
N

P�N , f 2 x�ri�x, q 2 N� , (15)

so that P�N , f� fully characterizes the quantum mechani-
cal behavior of the capacitor. For a normal constriction
P�N , f� does not depend on f. In this case we can rewrite
Eq. (15) directly in terms of charge distributions P�q� 
R

dx r�x, p�,

Pf�q� �
X
N

P�N �Pi�q 2 N� . (16)

Therefore, P�N � can be interpreted as classical probability.
For a superconducting constriction quantum mechanics is
essential and the resulting charge distribution depends on
the details of ri. For instance, if one sets r�q, q0� to
d�q�d�q0� the probabilities Pf�q� do not depend on f:

Pf�q� �
X
N

d�q 2 N �
Z

df P�N , f� . (17)

A similar result for a simple Josephson junction model
was cited in [9]. A more general choice of ri preserves
the f dependence. One can summarize the situation by
saying that N and f are related to canonically conjugated
variables q and x, which hampers their simultaneous mea-
surement.

Since r�x, p� are not positive in general, the P�N, f� do
not have to be positive. It might seem that these “negative
probabilities” cannot be measured. Fortunately, it is not
so. To understand this, let us see how one would measure
P�N � in the classical case. The only exact way is to make
use of Eq. (16). One thus measures Pi,f separately and
then obtains P�N � from a deconvolution procedure: the
Fourier transform of P is the ratio of Fourier transforms
of P’s. Our main result is that the same deconvolution
procedure can be applied to Eq. (15), resulting in

P�N, f� �
Z dx

2p
eiNx

rf�f 1 x�2,f 2 x�2�
ri�f 1 x�2, f 2 x�2�

.

(18)

Since off-diagonal entries of the density matrix cannot be
measured, this expression is not directly applicable. In [14]
a scheme was proposed, showing how this can be circum-
vented by a repeated measurement of differently prepared
initial density matrices. This allows one to characterize
and measure P�N, f�, whatever sign it has.
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In conclusion, we have studied the statistical properties
of supercurrent in short constrictions. An extension of the
Keldysh technique to account for full counting statistics
of systems containing superconductors was developed. In
the case of the supercurrent through a short constriction
(point contact or tunnel junction) the cumulant generat-
ing function can be found quite generally. It shows that
charge transfer occurs in units of e and 2e, which largely
enhanced probabilities in the case of contacts with large
transmission. The charge transfer occurs in long trains of
electrons passing through the contact in either direction,
which is a signature of the coherent nature of the super-
current. The relative probability of trains in the two di-
rections is determined by the thermal occupation and the
switching rate between them by the broadening parameter
in the bulk of the superconductors. For tunnel junctions
or point contacts between gapless superconductors we find
the occurrence of negative values of P�N , f�, which ques-
tions the interpretation as a probability. Accounting for
the full time evolution of an (idealized) measuring device,
we have shown that these negative values can indeed be
observed.
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