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Theory of domain wall motion in a random medium is extended to the case when the driving field is
below the zero-temperature depinning threshold and the creep of the domain wall is induced by thermal
fluctuations. Subject to an ac drive, the domain wall starts to move when the driving force exceeds
an effective threshold which is temperature and frequency dependent. Similar to the case of zero tem-
perature, the hysteresis loop displays three dynamical phase transitions at increasing ac field amplitude
h0. The phase diagram in the 3D phase space of temperature, driving force amplitude, and frequency is
investigated.

DOI: 10.1103/PhysRevLett.87.197005 PACS numbers: 74.60.Ge
Pinning dominated driven dynamics of elastic media in
random environment is a paradigm for a vast diversity of
physical systems. Examples include vortices in type II
superconductors, charge density waves (CDW) in solids,
stripe phases, Wigner crystals, dislocations in crystals, do-
main walls in magnets, and many others [1]. Having ap-
peared first in the context of dislocation dynamics [2], the
scaling theory of glassy dynamic state of random elastic
media came to fruition in the context of CDW [3] and vor-
tex lattices in high temperature superconductors [3,4], and
enjoyed an impressive success in explaining a wealth of
phenomenology of the low temperature vortex state [5]. A
closely related subject is the zero-temperature depinning
transition first studied for CDWs [6,7] and domain walls
[8,9]. Despite the significant recent progress, several key
questions specific to glassy dynamics are yet poorly un-
derstood. One of such fundamental key issues, although
known and extensively studied for more than 100 years in
magnets, is hysteresis of interfaces subject to the applied
ac drive and related aging and memory effects. A quest
for urgent progress in understanding hysteretic behavior
of magnetic domain walls is motivated also by emerg-
ing technological nanoscale magnetic systems whose ac
properties are controlled by the hysteretic dynamics of
interfaces.

A step towards theoretical description of hysteretic be-
havior of disordered interfaces has been undertaken in [10],
where the cyclic motion of the domain wall at zero tem-
perature under the ac field was investigated and the result-
ing magnetization hysteretic loop was described. A finite
temperature may change drastically the interface dynam-
ics: thermally activated creep motion becomes possible at
any small drive.

In this Letter we develop a unified description of ther-
mally activated and overthreshold domain wall dynamics
in impure magnets. We demonstrate that at finite tempera-
tures new scales of length, activation energy, and force
appear leading to emergence of a new, temperature- and
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frequency-dependent threshold field in the case of ac drive.
The latter is the first in a series of dynamical phase tran-
sitions. To be specific, we will speak on magnetic domain
walls. Accordingly, we will be using either of the terms
“force” or “field” equivalently.

Finite temperature dc dynamics.—The essential of the
zero-temperature dynamic behavior of an elastic medium
in a random environment is the existence of the finite
threshold depinning force hp, separating immobile at h ,

hp and sliding at h . hp states of the system. Near the
threshold the sliding velocity y shows a critical behav-
ior [6–9] y � �h 2 hp�b . At finite temperatures and
h ø hp thermally activated drift motion controlled by the
static rugged energy landscape occurs. The latter is gov-
erned by the interface free energy

H �
Z

dDx

Ω
1
2

G�=Z�2 1 V �x, Z� 2 hZ�x�
æ

, (1)

where G is the interface stiffness, h is the external
driving force, and V �x, Z� is the random impurity po-
tential. D-dimensional vector x is the coordinate along
the interface, and Z is the coordinate of the transverse
interface displacement. In the following we assume that
the disorder average of the random potential vanishes.
There are two different types of impurities, random bond
(RB) and random field (RF) type in terms of magnetic
models. The RB potential obeys the Gaussian statistics
with

VRB�x,Z�VRB�0, 0� � y2lD11d�x�d�Z� , (2)

where y2 � y
2
0c. y0, c, and l denote the strength, the con-

centration, and the correlation length of the impurity po-
tential. In the RF case VRF�x, Z� �

RZ
0 h�x, Z 0� dZ 0 where

the RF h�x, Z� has properties similar to VRB�x, Z�.
The static interface in a random environment becomes

rough. Its roughness obeys the scaling law [11]:
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w2�L� � �Z�x� 2 Z�0��2 � l2
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Lp

∂2z

; L � jxj ,

(3)

where the roughness exponent is z �
42D

3 for RF, and z �
0.2083�4 2 D� for 4 2 D ø 1 and z � 2�3 for D � 2,
for RB impurities, respectively [11,12]. The rough con-
figuration develops over length scales L $ Lp, where the
Larkin length Lp is a distance at which a typical fluctuation
of the pinning forces, balanced by elastic forces, produces
the transverse displacement w � l:

Lp � l�G�y�2��42D�. (4)

Note that the typical slopes w�L��L of the wall vanish for
L ¿ Lp since z , 1. The energy barrier which must be
overcome to depin a segment of the wall with the linear
size L is [2]

EB,0�L� � Tp�L�Lp�x ; x � D 2 2 1 2z . (5)

Here Tp � EB,0�Lp� 	 Gl2LD22
p is a typical pinning en-

ergy on a scale Lp . At temperature T . Tp the effective
force necessary for depinning drops rapidly with the tem-
perature [2]. In the presence of an external driving force
h, the total energy barrier EB�L� becomes

EB�L� 	 EB,0�L� 2 hLDw�L� � EB,0�L�
∑
1 2

µ
L
Lh

∂22z ∏
,

(6)

where Lh � Lp�hp�h�1��22z �. Thermally activated creep
motion at h ø hp is controlled by the critical segments
of size Lopt at which EB�L� reaches its maximum EB,max:
segments with L , Lopt collapse, while segments of the
lengths L . Lopt expand and contribute to the motion.
One finds Lopt 	 � x

D1z �1��22z �Lh giving [2]

EB,max � Tp�hp�h�m, m � x��2 2 z � . (7)

According to Middleton [13], in the vicinity of hp the rele-
vant pinning barriers should vanish as �h 2 hp�u [14].
Replacing Tp by T̃p � Tp�hp2h

hp
�u in EB,max we obtain

interpolation formula for the creep barrier that can be used
also at h & hp. The time scale to overcome this bar-
rier is of the order t�Lh� � t0 exp�ẼB,max�T �, where t0
is a microscopic hopping time, which leads to an average
velocity,

y�h� � gh exp

∑
2

Tp

T

µ
hp 2 h

hp

∂uµ
hp

h

∂m∏
, (8)

where g is the effective friction coefficient [2,3,15,16].
At low temperatures T ø Tp the dynamic threshold hp

separates the creep regime from the active sliding regime.
As can be seen from (8) a characteristic crossover field hT

plays the role of the depinning force, where

hT

hp
�

µ
T̃p�hT �

T

∂1�m

�

∑
Tp

T

µ
1 2

hT

hp

∂u∏1�m

. (9)

At h � hT , the drift velocity increases rapidly and at larger
fields it displays almost linear behavior y � gh. Note that
hT is a monotonously decreasing function of temperature
with a maximum hT � hp at T � 0.
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In a close vicinity of the threshold field hp , the effec-
tive energy barrier becomes small and even small thermal
fluctuations may be sufficient to overcome it. At finite
temperatures and h & hp the wall moves via thermal ac-
tivation process with velocity given by Eq. (8). Strictly
speaking, it means that at finite temperatures the critical
point shifts from h � hp to h � 0. Yet there remains a
memory of the critical behavior around h � hp display-
ing itself in a crossover behavior at finite but low tempera-
tures. The crossover is seen as a rounding of the h 2 y

characteristics y�h � hp� � Tb�u. We now can write an
interpolation formula for the velocity which is valid in a
wide range of variables:

y�h, T� � ghF�x, y�; x � h�hp ; y � Tp�T ,

(10)

F�x, y� �
Q�1 2 x�

1 1 � yx2m�b�u
exp�2yx2m�1 2 x�u�

1 Q�x 2 1�
∑

1
1 1 � yx2m�b�u

1

µ
1 2

1
x

∂b∏
.

(11)

Here Q�x� is the step function equal to zero at x , 0
and equal to 1 at positive x. The interpolation formula
(11) satisfies the following requirements: (i) y�h, T� �
gh at any fixed T and h ¿ hT ; (ii) y�h, T� �
gh exp�2 Tp

T �hp 2h
hp

�u � for hp 2 h ø hp and T ø Tp ;
(iii) y�h, T � � exp�2�Tp�T� �h�hp 2 1�2m� for T ø Tp ,
h ø hp , and EB,max�T ¿ 1; (iv) y�h, T� � ghp �h�hp 2
1�b for �h�hp 2 1� ø 1 and T ø Tp�h�hp 2 1�u;
(v) y�hp ,T� � ghp �T�Tp �b�u for T ø Tp.

So far we assumed that the propagating interface is
self-affine. This is confirmed by numerical simulations
in D . 1 interface dimensions for systems with weak
disorder [17]. In D � 1 dimensions the situation is less
transparent: in simulations which use a bounded distribu-
tion of random fields the interface appears to be self-affine
[18] or faceted [19] depending on whether lattice effects
are avoided or admitted, respectively. We ignore here
the possibility of faceted growth which occurs only in
systems with narrow magnetic domain walls. For an
unbounded distribution of random fields, however, a
percolative self-similar domain wall propagation was
observed [20]. In the following we will always assume
that the random fields distribution is bounded such that the
domain walls remain well defined. This is also confirmed
by our earlier simulation outside of the critical region [10].

Alternating fields.— If the external drive is oscillating
with frequency v, h � h0 sinvt, the barriers for which
vt�L� . 1 cannot be overcome during one cycle of the ac
field. From the condition vt � 1 we find a new frequency
and temperature dependent magnetic field hv which obeys

hv

hp
�

∑
Tp

TL

µ
1 2

hv

hp

∂u∏1�m

, (12)
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where L � ln1��vt0�. hv plays the role of the dynamic
threshold. At low fields h0 , hv there is no macroscopic
motion of the wall; its segments oscillate between the
metastable states with close energies giving rise to dissi-
pation [2]. Drift of the wall starts at h0 . hv . We assume
vt0 ø 1, so that hv , hT . Various regimes of domain
wall motion are summarized in Fig. 1.

Having derived the domain wall velocity as a function
of the driving field in the different h-T regions we consider
now the magnetic hysteresis following from the motion of
a single wall under the influence of an oscillating field.
Since substantial length scales are larger than Lp , where
slopes are small, the domain wall will be considered as
a straight line (plane) characterized by one coordinate Z
[10]. Its dynamics is determined by equation of motion

�Z � y���h�t���� . (13)

Z varies between limiting values 0 and L. Here L is the
linear size of the sample in the case of a single domain wall
or, in the multidomain case, equal to the average distance
between expanding nuclei. For harmonically oscillating
field h � h0 sinvt, Eq. (13) can be rewritten in terms of
h only:

dZ

dh
�

y�h�

v

q
h2

0 2 h2
; Z�h � 0� � 0 . (14)

Equations (13) and (14) are valid for h . hv . The field re-
gion h , hv where the motion has zero drift velocity will
not be considered here. The value hv plays the role of the
threshold field analogous to that of hp at zero temperature,
separating the region with the finite drift velocity from the
region where the directed drift is absent. At h . hv the
hysteresis is dominated by the activation processes. In this
respect it is similar to the nucleation dominated hystere-
sis described in [10] with two essential differences. First,
the activation relates to the formation of a nucleus on the
interface, not in the bulk. Second, the activation energy
depends on the magnetic field as a power function �h2m

FIG. 1. The phase diagram for the domain wall hysteresis at
finite temperature and frequency. Solid and vertical lines sepa-
rate no sliding, thermal creep, and mechanical drift regimes. See
also explanations in the text.
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due to the distribution of barriers depending on their length
scale.

We start with high temperatures T . Tp where the
zero-temperature threshold field hp plays no role [field
sweep (2) in Fig. 1]. In this case the motion of the
domain wall is determined by Eq. (14) for h . hv. As
in the case of zero temperature [10] three dynamic phase
transitions take place when the amplitude h0 increases
gradually at a fixed value of frequency. These transitions
change the shape (symmetry) of the hysteresis loop. At
the first of them proceeding at h0 � hv the hysteresis
loop first appears; at smaller amplitudes h0 , hv the
magnetization remains unchanged. The hysteresis loop
appearing at h0 . hv is characterized by incom-
plete magnetization reversal and reflection symmetry
h ! 2h,M ! M as shown in Fig. 2a. This symmetry
as well as incomplete magnetization reversal persists until
the next dynamic phase transition at h0 � ht1.

At h . ht1 the magnetization reversal becomes com-
plete and hysteresis loop symmetry changes to inversion
h ! 2h, M ! 2M (see Figs. 2b and 2c). The value ht1
is determined by a requirement that the domain wall pro-
ceeds from one sample boundary to another for half a pe-
riod. At the next dynamic phase transition the symmetry of
the hysteresis loop remains unchanged, but the part of the
cycle becomes reversible. Visually the hysteresis loop ac-
quires characteristic “whiskers” as shown in Fig. 2d. The
point of this transition ht2 is determined by a requirement
that the domain wall proceeds from one sample boundary
to another for a quarter period.

Starting from the transition amplitude h0 � ht1 each
hysteresis loop goes through three important points. One
of them is hv, at which the motion of domain wall starts,
and the two others the so-called coercive field hc and
reversal field hr . At coercive field the magnetization turns
into zero; at reversal field the magnetization becomes
completely reversed (see Figs. 2b–2d). Note that, for
h0 � ht1, hr � hv and hc � h0; for h0 � ht2, hr � h0.
All these fields can be found in our case. Equations for
ht1, ht2 are

FIG. 2. Schematic pictures of hysteresis loops (HL). (a) In-
complete HL for h0 , ht1. (b) Symmetric HL for h0 � ht1.
(c) The HL for ht1 , h0 , ht2 . (d) The HL for h0 . ht2. The
values hp , hc , hr , and h0 are all marked in all figures.
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Z htn

hv

y�h� dhp
h2

tn 2 h2
�

nvL
2

, n � 1, 2 . (15)

For the case T . Tp Eqs. (15) read

g�xn� �
nvL
2ghT

, g�x� �
Z x

xv

ye2y2m

�x2 2 y2�21�2 dx ,

(16)

where xn � htn�hT , n � 1, 2; xv � hv�hT � 1�L1�m.
Thus, x1, x2 are functions of a dimensionless parameter
u � vL�ghT , where L is the size of the system or an av-
erage size of domains. Its asymptotic at small u results
in xn � �ln�2�nu��21�m. The fields ht1, ht2 are close in
this case: �ht2 2 ht1��ht1 � ln2��m lnu�. The require-
ment ht1 . hv is satisfied if ghT t0 , L. The coercive
field hc and the reversal field hr are determined by equa-
tions M�hc� � 0; jM�hr � j � Ms. A simple analysis at
small u results in hc � ht1; hr � ht2. The area A of the
hysteresis loop at u ø 1 and h0 . ht1 does not depend
strongly on the amplitude h0. Figure 2 represents typi-
cal shapes of hysteresis loops and illustrates the geomet-
rical meaning of the field hv , hc, hr . It is approximately
A � 4hrMs. The dependence of magnetization on mag-
netic field is given by equation M�h� � Ms� 2Z�h�

L 2 1�.
Finally, in the range of moderately low temperatures

T , Tp the more complete expressions (10) and (11) have
to be used in integrating Eq. (14).

It is interesting to note that the similar (dynamic) transi-
tion from incomplete to complete hysteresis was observed
even in a standard simplistic mean-field model for pure
magnets with the reaction described by the Brillouin func-
tion [21]. This suggests that this kind of dynamic transition
which we discuss may be a generic property of nonlin-
ear systems. Another note is in order: hysteresis in large
multidomain magnet samples is a very complex phenome-
non and cannot always be reduced to motion of a single
domain wall (see, for example, numerical simulations of
random Ising model in [22], where hysteretic and memory
effects unlikely reducible to motion of a single DW were
revealed).

In conclusion, we have investigated critical creep mo-
tion at low, T ø Tp, and at high, T . Tp , temperatures,
Tp being the depinning temperature, and constructed the
dynamic phase diagram. At low temperatures creep at
h � hp retains features of the critical behavior and exhibits
the rounding of the h 2 y characteristic, according to [13].
At finite frequencies v, a new characteristic field hv , hp

comes into play, and the transition from the sliding regime
to pinning dominated activation motion is shifted to hv.
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