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Intrinsic Quantum Excitations of Low Temperature Glasses
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Several puzzling regularities concerning the low temperature excitations of glasses are quantitatively
explained by quantizing domain wall motions of the random first order glass transition theory. The
density of excitations agrees with experiment and scales with the size of a dynamically coherent region
at Tg , being about 200 molecules. The phonon coupling depends on the Lindemann ratio for vitrification
yielding the observed universal relation l�l � 150 between phonon wavelength l and mean free path
l. Multilevel behavior is predicted to occur in the temperature range of the thermal conductivity plateau.
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Decades ago, measurements of the heat capacity and
thermal conductivity of glasses at cryogenic temperatures
revealed the presence of excitable degrees of freedom not
present in perfect crystals [1]. These could be described as
two level tunneling systems whose energies and tunneling
matrix elements were randomly distributed [2,3]. Coupling
the tunneling systems to phonons explained the thermal
measurements and also predicted novel physical effects,
such as the nonlinear absorption of sound and a phonon
echo, which were later observed [4,5].

The nature of the tunneling entities has remained
obscure. Thoughtful experimentalists and theorists have
noticed puzzles when the model quantitatively confronts
experimental data [6–8]. For example, the entropy con-
tained in these excitations is much less than the residual
entropy frozen in at the glass transition. Yet, the density
of two level systems varies only modestly from material
to material. There is also a mysterious nearly universal
relation between the density of the two level systems and
their coupling to phonons which can be deduced from the
observation that the mean free path of phonons is about
150 times their wavelength at low temperature [7]. If
the two level systems arise from the motions of highly
localized specific configurations of atoms, as in impurity
doped crystals, instead of such a universal relation we
would expect significant variation with the glass’s chemi-
cal composition. These facts lead Yu and Leggett [8], as
well as others [9,10], to investigate the possibility that
the experimentally observed excitations are really highly
renormalized collective excitations of a system of micro-
scopic tunneling entities that interact strongly through
the exchange of phonons. While such a coupling seems
to be present, manifesting itself in spectral diffusion of
the two level entities [11], quantitative calculations based
on the interacting model suggest that thermodynamic
manifestations of the interaction should be confined to
ultralow temperatures [10,12]. This scenario then has not
yet explained the observations which called it forth.

Here we explore an alternative view of the quantum ex-
citations of a glass. Rather than regarding the tunneling
entities as extrinsic, we quantize the excitations that are
responsible for the activated dynamical events which slow
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as the glass transition is approached. These excitations
are mostly frozen in at the liquid glass transition. Many
aspects of these activated motions can be understood us-
ing the random first order transition theory of glasses [13].
This theory starts from some exactly solvable mean field
glass models showing one step replica symmetry break-
ing [14,15]. The picture of activated motions goes beyond
mean field theory by considering entropic droplets [16].
The theory quantitatively explains for a wide range of sub-
stances both the barrier heights [17] and nonexponentiality
of relaxations [18] observed near the glass transition. In
this picture, a viscous liquid or glass consists of a mosaic
of frustrated domain walls separating regions of energeti-
cally less frustrated material. Each mosaic cell resembles a
local minimum of the free energy, an “inherent structure”
if you will [19]. The typical size of the cells is nearly
universal and does not vary much with the composition of
the glass because it depends on the near universal value
of the maximum vibrational amplitude sustainable by the
glass —the Lindemann ratio. The mosaic length scale de-
pends not on the molecular character of the glass but on
its preparation time scale, logarithmically.

Large scale motions such as these domain wall move-
ments have usually been discounted as a possible origin
of the two level systems because tunneling amplitudes
decrease with the number of independently moving en-
tities and with the distance over which they move (see
Refs. [20–22] for exceptions). We will show that occa-
sionally in the amorphous solid such collective tunneling
can occur with a significant amplitude owing to the extraor-
dinary multiplicity of tunneling paths available for such
an entity and to the possibility of achieving a sharp local
resonance.

The density of excitations available through collective
tunneling can be calculated using an argument based on
the classical density of states of systems with one step
broken replica symmetry [23]. The result depends only
on the glass transition temperature Tg and the mosaic
size, and explains the magnitude of the heat capacity. The
coupling of these tunneling excitations to phonons is set
by Tg itself, again because of the universal Lindemann
ratio. For resonant scattering, the material dependent
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factors cancel to yield the observed relation between
phonon wavelength and mean free path. Our arguments
show that tunneling will appear to be two state like over
the wide range of temperatures where echo experiments
have been performed, but that the two state character
breaks down at higher temperatures where a plateau in the
thermal conductivity is observed [24] and where single
molecule experiments already give evidence for deviations
from two-stateness [25].

First, a simple argument for the density of excitations
to set the stage. The motions above the glass transi-
tion temperature Tg are rearrangements of finite sized co-
operative regions from one local free energy minimum
to another [17]. The free energy cost to create a new
minimum as a function of the droplet radius is F�r� �
4ps�r�r2 2

4p

3 r3Ts̃c . Here s�r� � s0a1�2r3�2 is a ra-
dius dependent surface tension whose form follows from
a renormalization group calculation and is caused by the
wetting of the interface between two particular low energy
configurations by other possible arrangements. s0 is sur-
face tension at the molecular length scale a. s̃c is the con-
figurational entropy per unit volume, which favors creating
other minima. In terms of the number of particles in the
droplet N � 4p

3 �r�a�3, we have F�N� � g
p
N 2 TscN ,

where g � 2
p

3p s0a2, and sc�T � is configurational en-
tropy per particle. An approximate density functional cal-
culation [17] gives g �

3
2

p
3p kBT ln�aLa2�pe�, where

aLa2 � 102, the inverse square of the Lindemann ratio,
hardly varies from substance to substance. The maxi-
mum of the free energy Fz � g2�4Tsc is reached at N0 �
�g�2Tsc�2 giving the typical motional barrier. Tg is set by
the quenching time for the glass t � t0eF

z�kBTg , where t0
is a molecular time scale. At Tg the system breaks up into
a mosaic of regions of size j, where F�N�� � 0, giving
N � � 190 and j � N�1�3a. j only logarithmically de-
pends on t and is about � 5.7 molecular radii, for quench-
ing times of hours, independent of molecular composition.

Each mosaic cell resembles a finite size mean field sys-
tem at TK , i.e., where the entropy vanishes. The density of
minima n�e� for any system experiencing an entropy cri-
sis is n�e�de �

de

kBTg
ee�kBTg . The proportionality constant

1�kBTg guarantees that there is only one absolute ground
state:

R0
2` de n�e� � 1. The total density of states in the

sample per unit volume is therefore N �e� � 1
kBTgj3 ee�kBTg .

We do not distinguish between the energy and the free
energy of basins because the zero point vibrational en-
tropy varies little from basin to basin. At low energies,
one thus gets for the conventional density of excitations
P̄ �

1
kBTgj3 . For silica with Tg � 1500 K and a � 3.5 Å,

this gives � 6 3 1045 J21 m23, a value typical for many
glasses [24]. Apart from the Tg variation, which has been
noted experimentally (see, e.g., [26]), the density is seen to
be nearly universal for glasses made with the same quench-
ing rate. By integrating the flat distribution P̄ up to Tg one
finds that the low level excitations accessible at cryogenic
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temperatures would account for less than �a�j�3 � 1% of
the residual entropy at Tg.

A more complete argument demonstrates that resonant
tunneling consisting of small displacements of atoms
within a region of size on the order j, as illustrated in
Fig. 1, can indeed occur and gives the same excitation
density as the simpler argument. We first examine the
existence of resonant levels. Consider a region from
the system quenched below Tg which forms a particular
local minimum. An excitation corresponds to intro-
ducing a different minimum structure, encompassing
N molecules. The internal energy will be on average
Dcp�Tg 2 TK�N � TgscN, where Dcp is the configura-
tional heat capacity. On top of the internal energy, there
is a contribution from an interface energy g

p
N due to

the mismatch with the configuration of the surrounding
material. The distribution of excitation energies of those
“droplet” configurations should be Gaussian [15], giving
for the number of states higher in energy by E than
the original one VN �E� � exp�scN 2 ��E 2 �TgscN 1

g
p
N�	2�2dE2N

. dE2 is the variance in energy per par-

ticle at the glass transition temperature. sc is the residual
entropy that would be frozen at Tg [17]. The entropy
crisis for the bulk fixes the glass transition temperature by
dE2 � 2scT

2
K . The number of states at small excitation

energies grows with the excited region’s size. Yet below
a critical size the domain wall energy prevents resonance.
The number of nearly resonant levels becomes on the
order one only for N � �g�Tgsc�2 ) N � N�, as before.
Again, excitation energies are distributed according to an
exponential eE�kBTg , giving the same P̄. The multiplicity
of nearly isoenergetic, i.e., resonant configurations intrin-
sically follows from the nonequilibrium freezing at Tg.

The enormous multiplicity of states at Tg not only al-
lows resonance but also yields myriads of possible tunnel-
ing paths from the initial configuration to the resonant one
with a droplet of size N� embedded in it. Each path is a
connected sequence of dropletlike configurations involving
rearrangements of a region containing a growing number

FIG. 1 (color). A schematic of a tunneling center is shown.
j is its typical size. dL is a typical displacement of the order
of the Lindemann distance. Red contour illustrates a transition
state size.
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N , N� particles. The tunneling amplitude will be a sum
over all these paths, much like the partition sum for a ran-
dom directed polymer [27] with the weight of each path
being the exponential of its action in units of h̄. If h̄ is
large, the path sum will be dominated by a large number
of paths. These would go through a nearly continuum of
paths as shown in Fig. 2. This situation would correspond
with a “quantum melted glass” [28]. On the other hand, for
small h̄, the smallest action path only will contribute giv-
ing a tunneling element e2Smin�h̄ . This action varies from
one resonant pair to another and will be exponentially dis-
tributed over a range scaling with kBTg, giving a power
law distribution for the tunneling amplitude. Finding the
precise statistics of the lowest action path from the direct
polymer analogy is quite complex since the tunneling dis-
tribution depends on detailed (correlated) statistics of the
energy variations all along the tunneling paths. We obtain a
sensible approximation by recognizing that the action will
be crudely proportional to the largest barrier encountered
as the virtual tunneling droplet grows, as would be true
for an inverted oscillator potential. To find the statistics of
this barrier at any value of N we must find the distribution
of the lowest energy droplet state at N (notice we neglect
correlations here). This distribution is of the same form as
the one in VN �E�, except the variance is twice larger now
because the energies of both the initial and the transition
states may fluctuate since the system can choose where to
begin to tunnel: VN �V � � exp�scN 2 ��V 2 �TgscN 1

g
p
N�	2�4dE2N

. Generally, where a resonant state ex-

ists the tunneling path will start by rearranging high energy
local configurations into ones with internal energies near
EK . The lowest barrier likely to be encountered occurs
when VN �Vmp� � 1, as usual in the extreme value sta-
tistics, giving Vmp � g

p
N 2 �2

p
2 2 1�TgscN . V as a

function of N is shown as a solid black line in Fig. 2. The
maximum value of Vmp is proportional to the activation
barrier at Tg, Fz but smaller due to the fluctuation of the

FIG. 2 (color). The black solid line shows the barrier along the
most probable path. Thick horizontal lines at low energies and
the shaded area at energies above the threshold represent energy
levels available at size N . The red and purple lines demonstrate
generic paths, and the green line shows the actual (lowest barrier)
path, which would be followed if h̄vz , kBT�2p .
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initial energy: Vmax � Fz��2
p

2 2 1� � 26Tgsc. The
maximum occurs at Nz � N0��2

p
2 2 1�2 � 14. This is

small enough that we can expect system dependent cor-
rections. There will generally be states below Vmp which
can allow tunneling as in the green line shown in Fig. 2.
The distribution of barriers (and therefore actions) below
Vmax follows from VN �V � giving an exponential distribu-
tion proportional to V�Vz� � exp�218sc 1

Vz

p
2 Tg


. The
chances to be able to tunnel to a state of precisely the
minimum resonant size is suppressed by a factor e218sc .
But to find a state which is simultaneously resonant and
within easy tunneling requires encompassing a region with
only 18 additional molecules, less than a single layer.
Hence, any region of size �200 molecules will have a
nearly resonant tunneling state within range Tg. Tunnel-
ing involves simultaneous motion of all the atoms in the
droplet, and might have a high effective mass or even
be damped owing due to the complex rearrangements in-
volved. It is hard to rule out the latter possibility, but the
actual effective mass is low since moving a domain wall
over a molecular distance a in an (imaginary) tunneling
time t involves displacing individual atoms only a Lin-
demann length dL. The kinetic energy associated with
this motion is Mw�a�t�2 � Nwm�dL�t�2, where Nw �
�j�a�2 is the number of molecules in the wall and m is
the molecular mass. Thus the mass of the wall Mw is
only m�j�a�2�dL�a�2. Using �j�a� � 5.8 and �dL�a�2 �
0.01 gives Mw � m�3. Computational studies of simi-
lar multiparticle tunneling events [20,21] are consistent
with the low mass obtained here. As we shall see below,
�dL�a�2 � kBTg�rc2

sa
3, where r is mass density and cs

is the speed of sound. This gives Mw � �j�a�2kBTg�c2
s .

It follows that the frequency of motion at the barrier top
vz � 2≠2V�≠r2�Mw � 1.6�a�j�vD , expressing V as a
function of droplet’s radius r � a�3N�4p�1�3.

Since the tunneling matrix element D for a path with
barrier Vz is proportional to e2pV z�h̄vz

, we obtain a rather
flat distribution for the tunneling exponent logD, as is gen-
erally used to fit experiments.

We now determine the size of the coupling of the
domain motions to the elastic (single polarization) strain
field =f, which has potential energy density rc2

s �=f�2�2.
At low temperature the phonon wavelengths are long, so
one can describe the interaction with a standard pointlike
term si

zg=f, where sz is an operator of the tunneling
degree of freedom. The tunneling entities first come
into existence at a temperature TA, somewhat higher
than Tg, where mechanical stability of local minima
to thermal vibrations is achieved [13]. The phonon
energies at the microscopic scale and their coupling to
the defects will be comparable and on the order of Tg,
giving rc2

s��=f�2�a3 � �g=fs� � kBTg. This sets the

coupling g at the molecular scale g �
q

rc2
sa3kBTg. The

coupling to the extended defects is weakly dependent on
their size. To see this, in the continuum limit, we separate
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the total elastic deformation tensor uij into contributions
fij and 6dij�2 due to phonon displacement and the
tunneling motion, respectively. The difference in energy
between the defect configurations in the presence of a
(longitudinal) phonon is then rc2

sfii

R
d3r dii , where the

integration covers the droplet. The coupling is therefore
proportional to a surface integral

R
ds d�r�, where d�r�

are the tunneling displacements at the edge of the droplet.
These are random and of order �a�j�dL because the
inelastic displacements decrease from �dL in the center
of the droplet to zero outside. The integral is of order
a2
p
N�2�3�a�j�dL; therefore g � rc2

sa
3dL. Using

dL�a � =f at Tg, one still gets g �
q

rc2
sa

3kBTg.
The resonant scattering from the tunneling of mo-

saic cells gives l21
mfp�v� � p

P̄g2

rc3
s
v tanh� h̄v

2kBT � as the
inverse mean free path of a phonon with frequency v

[24,29]. Thus, ldB�lmfp � 3P̄g2�rc2
s . Combining

P̄ � 1�kBTgj3 with the expression for the coupling con-
stant, one obtains lmfp�ldB � �j�a�3 � 102. This ratio
depends only on j�a, independent of molecular compo-
sition. It is a geometrical factor reflecting the relatively
low concentration of cooperative regions in a supercooled
liquid frozen on quenching, an almost universal number
within the random first order glass transition theory [17].

At high temperatures the domain wall motion will
become noticeably multilevel. Ignoring damping, at a
temperature T 0 � h̄vz�2pkB � �a�j�TD�2p, the wall
motion will typically be classical. This temperature lies
within the plateau in thermal conductivity [7]. Damping,
which becomes considerable also at these temperatures,
should lower this estimate, as also will the fluctuations in
barrier height. A multilevel system will more effectively
scatter phonons, which would cause the plateau. Consis-
tent with this, single molecule studies of spectral diffusion
of dyes in polymer glasses at these temperatures reveal
spectral trails that wander [25], as expected for domain
walls in crystalline materials [30]. Multilevel behavior at
these temperatures is also implicated by studies on noise
spectra in amorphous metals [31].
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