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Is the Particle Current a Relevant Feature in Driven Lattice Gases?
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By performing extensive Monte Carlo simulations we show that the infinitely fast driven lattice gas
(IDLG) shares its critical properties with the randomly driven lattice gas (RDLG). All the measured
exponents, scaling functions, and amplitudes are the same in both cases. This strongly supports the idea
that the main relevant nonequilibrium effect in driven lattice gases is the anisotropy (present in both
IDLG and RDLG) and not the particle current (present only in the IDLG). This result, at odds with the
predictions from the standard theory for the IDLG, supports a recently proposed alternative theory. The

case of finite driving fields is also briefly discussed.
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The Ising model exhibits a prototypical equilibrium
phase transition, and the associated ¢* Ginzburg-Landau
theory is a paradigm of continuous theory for equilibrium
critical phenomena [1,2]. However, thermodynamic equi-
librium is exceptional in nature where stationary states are
typically away from equilibrium [3]. With the purpose of
defining simple lattice models describing generic nonequi-
librium phase transitions, different trials have been made
in the last two decades. Among them, perhaps the most
intriguing example is the driven lattice gas (DLG) [3-5].
(Other interesting examples are the directed percolation
model [3] and the Kardar-Parisi-Zhang equation.) The
DLG, being a straightforward extension of the Ising
model, has, in fact, become a workbench for emergent
nonequilibrium theories and field theoretical approaches.

The DLG is a d-dimensional kinetic Ising model with
conserved dynamics, in which transitions in the direction
(against the direction) of an externally applied field, E, are
favored (unfavored) [3—5], while transitions perpendicular
to the field are unaffected by it. The field induces two main
nonequilibrium effects: (i) the presence of a net current of
particles along its direction, and (ii) strongly anisotropic
configurations [6]. At high temperatures, the system is
in a disordered phase while, for half-filled lattices (the
only case we refer to in what follows) there is a second-
order critical point, below which the DLG segregates into
(two) high and low density aligned-with-the-field stripes.
Establishing unambiguously the DLG universality class is
an important issue in the way to rationalize the behavior
of nonequilibrium systems.

Continuous approaches such as Langevin and associ-
ated field theories [2] have been most useful in studying
universality issues in equilibrium critical phenomena. In
particular, coarse-grained approaches combined with re-
normalization group (RG) techniques provide a method
for the classification of the different possible terms (opera-
tors) as relevant, irrelevant, or marginal. In fact, Langevin
equations are more illuminating than other (even more
rigorous) approaches, as they permit one to understand
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systematically how possible perturbations or model varia-
tions would affect critical properties. Consequently, many
studies have focused on the DLG and its universality by
using both nonequilibrium continuous approaches and
computer simulations (unfortunately, general exact so-
lutions are not available). Within this perspective, it is
somewhat deceptive that after many computer and analyti-
cal studies, the universality class of the DLG remains a
debated issue [3,5,7,8].

A phenomenological Langevin equation intended to cap-
ture the relevant physics of the DLG at criticality was pro-
posed and renormalized more than a decade ago [9]. This
equation, referred to as driven diffusive system (DDS), is a
natural extension of the conserved ¢* theory for the Ising
equilibrium transition (model B [1]) and seems to capture
the main symmetries and conservation laws of the discrete
DLG. Itincludes a particle current term (which from naive
power counting turns out to be the most relevant nonlin-
earity) as well as anisotropic coefficients. It certainly is a
suitable and very reasonable candidate to be the canonical
coarse-grained model representative of the DLG univer-
sality class. The DDS Langevin equation reads

G = TV~ Vi + Vi
+nVig — aVye? + (). (D)

where ¢ is the coarse-grained field, ¢ is a conserved
Gaussian noise, and the cubic term, being a dangerously
irrelevant variable [2], is kept in order to ensure stability
[O]. 7, 71, A, and a are model parameters. The most
emblematic (exact) prediction derived from the DDS RG
analysis, namely, the mean field behavior of the order pa-
rameter critical exponent, 8 = 1/2 [9], has eluded a large
number of Monte Carlo (MC) analysis aimed at prob-
ing it [12], however. In particular, systematic deviations
from the predicted scaling are observed both in d = 2
[3,10] andin d = 3 [11,12]. Indeed, different MC analysis
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(performed using a variety of aspect ratios and order pa-
rameters) lead systematically to a value of S close to =0.3
(in d = 2), with error bars excluding apparently the value
B = 1/2 (see [3] for a critical review of simulation analy-
sis). This is a main indication that, strikingly enough, the
DDS equation does not describe properly the infinitely fast
driven DLG (IDLG) critical properties. Moreover, there
are some other hints suggesting strongly that the differ-
ences between the predictions of the standard Langevin ap-
proach and MC results are more fundamental than a simple
discrepancy in the value of 8. In particular, the intuition
developed from MC simulations of the DLG and variants
of it [3] suggests that, contrary to what the DDS equation
establishes, it is the anisotropy and not the presence of a
current that is the basic ingredient controlling the critical
behavior [6]. For instance, in a modified DLG in which
anisotropy is included by means other than a current [13],
the scaling behavior at criticality remains unaltered upon
switching on (infinite) driving (see [3,13]). Other com-
pelling evidence supporting this hypothesis can be found
in [3,14].

In an attempt to clarify this puzzling situation, and rec-
oncile continuous approaches with numerics, different sce-
narios have been explored. In particular, an alternative
route to build up Langevin equations starting from generic
microscopic master equations was recently proposed [7].
By applying this approach to the DLG, one observes that,
owing to a transition-rate saturation effect, the coefficient
a of the nonlinear current term, V}j¢2, vanishes in the limit
of infinite driving fields and, therefore, it does not appear
in the final Langevin equation nor is it generated perturba-
tively [7]. The resulting theory [alternative to Eq. (1)] is

D) = TV~ Vg + SV
+ Vi + ¢ )

plus higher order irrelevant contributions (note that a
linear current term has been eliminated by employing
a Galilean transformation [5,7]). This equation, named
below anisotropic diffusive system (ADS), is a well known
one: it coincides with the Langevin equation representing
the random DLG (RDLG) [15,16] (for which the driving
field takes values o and —o0 in a random unbiased fashion,
generating anisotropy but not an overall current). This
theory has been extensively studied in [15,16]; its critical
dimension is d. = 3 (instead of d. = 5 for the DDS),
and the critical exponents and finite size scaling (FSS)
properties are now well known. Other systems in this
universality class are the two-temperature model [17]
and the anisotropic lattice gas automaton model [13].
This theory for the IDLG includes anisotropy as its basic
nonequilibrium ingredient. Instead— for nonsaturating,
finite, driving fields—the cancellation of the nonlinear
current term does not occur, and our method recovers the
standard DDS equation.

Aiming at further clarifying these issues, we report here
on extensive MC simulations of the IDLG and the RDLG
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ind = 2. The main objectives are the following: (i) trying
to conclude whether the IDLG and the RDLG share the
same critical behavior or not; and (ii) measuring the criti-
cal exponents by performing systematic anisotropic finite-
size scaling (FSS). In fact, we perform FSS analysis for
both the IDLG and the RDLG by following the anisotropic
FSS scheme proposed in [15] consistent with the ADS
theory; this allows us to analyze systematically possible
scaling differences between both models. We also report
on the case of finite-driving DLG.

We consider rectangular lattices of size L) X L
with periodic boundary conditions and random sequential
updating [3,5]; the external field E acts in the x (parallel)
direction. Particles jump to a randomly chosen nearest
neighbor site (provided that it is empty) with probability:
min (1,exp[—B(AH + EAj)]), where AH is the en-
ergy (Ising Hamiltonian) variation, and Aj = (—1,0,1)
for jumps along, against, and orthogonal to the direction of
the field, respectively. Following [10,16] the order parame-
ter is chosen as the structure factor S(0,27 /L ;). In order
to perform a systematic anisotropic FSS we considered
system sizes 20 X 20, 45 X 30, 80 X 40, and 125 X 50.

These aspect ratios satisfy Lﬁ s 0.2236 X L, where
vi/v) = 1/2 consistent with ADS anisotropic spatial
scaling [10,16]. The number of MC steps considered
varied between 1.8 X 10% and 2.4 X 10%, much larger
than in any previously reported MC simulations. The
total CPU time employed is about eight months in a Pen-
tiumlIl 400 MHz machine. The critical temperature is
determined by using the fourth (Binder) cumulant method
[18]. For the IDLG, the critical temperature is found to
be T/ = 1.396(4)To (To is the Onsager temperature),
slightly below previously reported values [3,5], while we
find T® = 1.390(4)To for the RDLG (see insets of Fig. 3).
These critical values were employed for the FSS analysis.

In Fig. 1 we plot the order parameter, rescaled by a factor

1 . . .
Lﬁg/y” , Versus eL”/V", where € is the distance to the critical

point, for different system sizes L. A nearly perfect data
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FIG. 1. Log-log plot of the order parameter rescaled by Lﬁ;/V”
1/

vs €L ", for different system sizes: (O) 45 X 30; (A) 80 X
40; (DB 125 X 50. Filled (empty) symbols stand for the RDLG
(IDLG); error bars are smaller than the symbols.
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collapse is obtained by fixing v = 1.25 and S = 0.33.
The collapse gets worse upon slightly changing these
values; more precise estimates of the associated error bars
is a difficult and not essential issue in this context. Notice
that we are plotting in the same graph data for the IDLG
and for the RDLG, implying that the FSS scaling function
is precisely the same for both models. Furthermore, the
slopes of the asymptotic branches are approximately 1/3
and —0.61, consistent both with the order parameter
exponent being B = 0.33, and y = 1.22 (see below)
[19]. In general, even when the scaling functions are
universal, their corresponding amplitudes are not expected
to be so. For this reason, usually one has to introduce
the so-called metric factors (varying amplitudes) [20] in
order to obtain superposition of scaling functions within
the same universality class. Contrary to this expectation,
the magnetization scaling functions for IDLG and RDLG
overlap perfectly. Therefore, it comes as a surprise that
not only are the scaling functions and the B exponent
universal in both models, but even the amplitudes co-
incide. A similar situation has recently been reported for
a different type of anisotropic FSS [21].

We have also computed the system susceptibilities,
defined as the relative fluctuations of the order parameter:
X = Sm(ﬂh) [(m?) —/(m}z]. In Fig. 2, we plot the sus-

Vi

as a function of the rescaled

distance to the critical point, €L|1|/V". The best data
collapse is obtained by employing the values y = 1.22
and v = 1.25 for both models with, again, coinciding
amplitudes. It should be stressed that this is the first time
a really good collapse is observed below the critical point
for anisotropic scaling of the IDLG. Plotting the dimen-
sionless Binder cumulant as a function of the rescaled
distance to the critical point with v = 1.25, again, nearly
perfect data collapse is obtained for both models and all
system sizes (Fig. 3). We also performed simulations in
square lattices (128 X 128) as in some previous studies
[3,14]. Monitoring m'/B as a function of T/To we
see no appreciable systematic difference between the
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FIG. 2. Log-log plot of the susceptibility rescaled by LV/V”

\& EL|1|/V”. Symbols are as in Fig. 1 (larger than error bars).
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curves for IDLG and RDLG, which have the same slope
within numerical accuracy. The best linear fit correlation
is obtained for B =~ 0.33 in both cases, providing an
extra consistency check for our results. Moreover, eye
inspection of IDLG and RDLG configurations, for any
geometry, at a fixed relative temperature, does not permit
one to distinguish one from the other. In particular, the
interfacial properties look identical. Let us also stress
that all the obtained exponent values are compatible with
previous measures for the RDLG, as well as with the
exponents obtained within an e expansion of the ADS
theory [15,16].

In conclusion, MC results support strongly that both the
IDLG and the RDLG belong in the same universality class,
and share not only critical exponents and scaling func-
tions, but also the scaling amplitudes. This universality
class is described by the ADS equation, Eq. (2). There
is absolutely no hint of any difference in the asymptotic
behavior between the model with a current (IDLG) with
respect to the current-less one (RDLG). All the numeri-
cal evidence confirms that it is the anisotropy and not the
net current (if any) the most relevant nonequilibrium in-
gredient of driven systems. As discussed in the introduc-
tion, this is striking from a field theoretical perspective
given that the nonlinear current term, V) ¢2, is naively a
relevant perturbation at the ADS fixed point. In an alter-
native approach, the coefficient of such a term vanishes.
In this picture, the fast drive limit corresponds to a sort
of multicritical point in which an a priori relevant opera-
tor is absent due to a cancellation of its coefficient and,
consequently, the usual “up-down” Ising symmetry (i.e.,
the three-point correlation functions vanish) is restored at
criticality. In any case, it should be stressed that, from a
more general perspective, field theoretical descriptions of
nonequilibrium systems are much more delicate and sub-
tle than their equilibrium counterparts, and an extremely
careful inspection of the system symmetries, conservation
laws, and dynamical features is required before venturing

€ L”l /V||

FIG. 3. Scaling plot of the fourth cumulant vs EL|1|/V”. Upper
(lower) inset: fourth cumulant for the IDLG (RDLG) vs T/Tg.
Symbols are as in Fig. 1.
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to make predictions on nonequilibrium universality issues.
For example, fermionic and bosonic nonequilibrium sys-
tems with the same dynamics, symmetries, and conserva-
tion laws have recently been reported to belong to different
universality classes [22]. One could wonder whether the
DLG hard-core interaction should be taken into account in
its Langevin representation.

Elucidating the critical behavior for finite £ remains
a challenging and interesting objective. Both our alter-
native Langevin-building approach and the standard one,
Eq. (1), include a relevant current term in this case and,
consequently, predict 8 = 1/2. Obtaining clear-cut re-
sults in this case is a computationally expensive task for the
following reasons: (i) As the external field appears in the
argument of an exponential, even relatively small values
of E generate situations close to saturation, and strong
crossover effects could hide the true asymptotic regime.
(1) If the field value is taken too small, crossovers from
the equilibrium regime may also burden observations. A
possible scenario that could follow from MC analysis is
that finite fields show mean field behavior; that would be
a strong backing for our theory [7] that predicts the finite
and the infinite driving cases to be qualitatively different.
If, instead, scaling happens to be that of the ADS (as our
preliminary MC results for £ = 3 and E = 0.5 seem to
indicate; for E = 0.25 results do not quite fit this indica-
tion), it would prove that it is for any arbitrary value of
the driving field that anisotropy is the most relevant ingre-
dient of driven systems. This scenario would uncover a
new puzzling situation and would certainly call for deeper
theoretical understanding. Huge and careful simulations
would be required to extract neat conclusions overcoming
difficulties (i) and (ii) above.

In summary, we have performed extensive MC simula-
tions of the IDLG and the RDLG. By using anisotropic
finite size scaling techniques we have shown that both
models belong to the same universality class: their critical
exponents, scaling functions, and amplitudes are undistin-
guishable and coincide with those of the ADS equation.
This result supports the conclusion that it is the presence
of anisotropic coefficients, and not the particle current, the
most relevant ingredient in these nonequilibrium driven
problems (at least in the fast drive limit). Further theo-
retical efforts are certainly required in order to (i) sort out
if our alternative Langevin approach is correct and what
are its possible limitations, and (ii) further clarify the uni-
versality issues of this quintessential nonequilibrium prob-
lem. Finally, it would also be very interesting to combine
the powerful finite size methods recently introduced in this
context by Caracciolo et al. in a nice recent work [23] with
our alternative theory to verify if they lead to better data
collapse than when used to test the standard DDS equation
(hopefully without having to introduce strong corrections
to scaling and providing good order-parameter scaling).
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