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Reconstruction of the Shapes of Gold Nanocrystals Using Coherent X-Ray Diffraction
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Inverse problems arise frequently in physics: The magnitude of the Fourier transform of some function
is measurable, but not its phase. The “phase problem” in crystallography arises because the number of
discrete measurements (Bragg peak intensities) is only half the number of unknowns (electron density
points in space). Sayre first proposed that oversampling of diffraction data should allow a solution, and
this has recently been demonstrated. Here we report the successful phasing of an oversampled hard x-ray
diffraction pattern measured from a single nanocrystal of gold.
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Because of the unsurpassed power of crystallography to
reveal the structure of matter at the atomic scale [1], a num-
ber of important methods have been proposed for avoid-
ing its inherent phase problem. Generally speaking, these
work by adding supplementary information, such as sta-
tistical chemical knowledge [2], solvent flatness [3], non-
crystallographic symmetry [4], or “maximum entropy” of
the solution [5]. The utility of oversampling diffraction
patterns was considered by Sayre [6] and developed as a
practical method, which has since been proven computa-
tionally [7,8]. At least twofold oversampling of the data is
required, in order to exceed the spatial Nyquist frequency,
whereby the inversion becomes mathematically overdeter-
mined. Oversampling is not possible for diffraction from
macroscopic crystals because all the intensity is concen-
trated in Bragg peaks. It has been demonstrated compu-
tationally [7,8], however, that inversions are possible for
inherently nonperiodic objects whose diffraction patterns
are continuous functions. Recently, Miao et al. used over-
sampling to invert the soft x-ray forward-scattering pattern
measured from a fabricated object [9].

The oversampling approach is different from, but
related to, holographic methods [10]. In holography, a
known “reference wave” is caused to interfere with a wave
of unknown phase so that the phase is revealed as intensity
variations. Applications have been developed to probe lo-
cal structure by photoelectron diffraction [11,12] and x-ray
fluorescence imaging [13–15]. Three-beam diffraction
phasing methods for crystallography [16], mirror-based
heterostructure phase determination [17], and phase-
sensitive tomography [18] are also based on the concept
of a reference wave.

Our experiments extend the previous successes with
oversampling as an inversion tool [7–9] to the case of
diffraction from single crystals, sufficiently small to gen-
erate a continuous diffraction pattern, which can be over-
sampled. This requires the coherence length of the x-ray
beam to be bigger than the sample, in the range of a few
microns, as is now achievable with the latest sources of
synchrotron radiation. When a crystal of nanometer di-
mensions is illuminated by such a beam, its diffraction is
no longer comprised of sharp Bragg peaks, but of a com-
05-1 0031-9007�01�87(19)�195505(4)$15.00
plicated intensity distribution centered at each reciprocal
lattice point [19]. For an ensemble of many particles, the
width of the average intensity distribution is just given by
the “finite-size effect.” A single particle gives a detailed
distribution instead, which can be measured on a suffi-
ciently fine scale to fulfill the oversampling requirement.

Inversion of such a diffraction pattern is an overde-
termined analytical problem [20]. The solution can be
reached by a number of iterative methods based on the
procedure proposed by Gerchberg and Saxton (GS) [21]
and since developed further by Fienup [22] and others.
There is a formal analogy, pointed out by Millane [23],
between these image-seeking methods and the aforemen-
tioned “density modification” methods in crystallography
[3–5]. Known amplitudes are combined with random
phases and Fourier transformed to make an initial estimate
of the real-space structure. This is then updated by ap-
plying a real-space constraint and backtransformed. The
phases generated are combined with the measured ampli-
tudes and the cycle is repeated. We will show in this paper
that the method can be used to invert an x-ray diffrac-
tion pattern into an image of the nanocrystal from which it
originates.

The gold nanocrystals examined in these experiments
were prepared by heating thin films in a furnace at 950 ±C
for around 100 h. The films were prepared by evaporation
of gold onto silicon wafers, used as SiO2 substrates, to a
thickness of 1000 Å. During heating, the uniform films
first break up into one-dimensional ribbons, then into indi-
vidual droplets with approximately uniform separation, as
monitored by scanning-electron microscopy (SEM) and in
good agreement with the findings of Heyraud and Métois
[24]. These droplets, once cooled to room temperature,
were found to be single crystals with faceted morpholo-
gies, probably related to the equilibrium crystal shape at
the annealing temperature [25]. The resulting crystals had
a fairly narrow size distribution centered around 1 mm di-
ameter. Similar treatment of 3000 Å thick films was found
to produce crystals around 4 mm in diameter.

The nanocrystals were measured at Sector 33 of the Ad-
vanced Photon Source (APS) using undulator radiation of
1.65 Å wavelength. The beam was prepared with a double
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crystal Si(111) monochromator, without focusing, and fil-
tered by reflection from two Pt-coated mirrors. The lat-
eral coherence length of around 5 mm, given by the source
size [26], and the longitudinal coherence length of around
0.3 mm, given by the monochromator bandwidth, were
both sufficient for the measurements. Slits in front of the
sample were used to produce a 30 mm 3 100 mm foot-
print on the sample at the center of the diffractometer. The
nanocrystals were found to have �111� texture with ran-
dom orientation about the substrate surface normal. By
measuring an off-specular �111� reflection, the diffrac-
tion from each of the 300 crystals within the illuminated
area could be separated by scanning the diffractometer’s
f axis. Approximately 300 000 counts per second were
recorded from each 1 mm crystal, integrated over a wide
detector. After centering the �111� reflection of the cho-
sen crystal, the detector was replaced with a direct-reading
charge-coupled device (CCD), with 22.5 mm 3 22.5 mm
pixels, situated 2.8 m from the sample, giving a resolution
of Dq � 3 3 1025 Å21 per pixel in both the vertical and
the horizontal directions. Multiple accumulations of the
diffraction pattern avoided saturation of the CCD and a
beamstop was used to block out the intense central region,
typically resulting in the pattern of Fig. 1.

All the �111� coherent diffraction patterns we observed
showed the two characteristic features seen in Fig. 1: the
radial flares of intensity and the fringes of modulation
along the flares. The diffraction patterns obtained at the
exact �111� Bragg condition were found to be almost rota-
tionally symmetric about their apparent center, as seen in
Fig. 1. This symmetry was quickly lost when the Bragg
angle, v, was moved away from center in steps of 0.001±:
The flare on one side of the pattern increased in inten-
sity at the expense of the one on the opposite side. This
local symmetry can be understood from the following
considerations.

If the atoms of the crystal lie on a perfect lattice, L�r�,
bounded by some shape, G, the diffracted intensity will
be given by the square magnitude of a complex amplitude,

FIG. 1 (color). Coherent x-ray diffraction pattern of the im-
mediate vicinity of the �111� Bragg reflection of a 1 mm gold
nanocrystal. A beamstop blocks the center. The color contour
levels are logarithmically spaced.
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A�q�, expressed as a function of total momentum transfer,
q, in reciprocal space. A�q� is proportional to the Fourier
transform of the electron density everywhere inside the
crystal:

A�q� �
Z

sG�r�L�r� exp�iq ? r� dr , (1)

sG�r� �

8<
:

0 : r ” G

1 : r [ G ,
(2)

L�r� �
X̀

nj�2`

d�r 2 n1a1 2 n2a2 2 n3a3� , (3)

where aj are the crystal lattice vectors. Applying the con-
volution theorem to the product in Eq. (1) and noting that
the Fourier transform of the lattice function, L�r�, is it-
self a lattice function in reciprocal space, we find that
the Fourier transform of the shape function, sG�r�, be-
comes repeated around every reciprocal lattice point, de-
noted q � h. The combination of this periodic symmetry,
A�h 1 q� � A�q�, with the centrosymmetry of Eq. (1),
A�q� � A��2q�, gives the local symmetry we observed
in the data: A�h 1 dq� � A��h 2 dq�. Empirically, we
can identify the Bragg point, q � h, in three dimensions
(3D) with the rotation center (2D) of the most symmetric
diffraction pattern of the v series (1D).

The deviations from local symmetry are attributed to
crystal imperfections which result in strains. Strain in the
crystal will cause its atoms to move from exact lattice sites,
so Eq. (3) will no longer apply. It can be shown [27] that
this can be approximated by allowing the shape function,
sG�r�, to become complex, with an imaginary part propor-
tional to the displacement projected onto the direction of
q. Since a complex valued object no longer has a centro-
symmetric diffraction pattern, the local symmetry is lost.

The flares point in the directions of the surface normals
of the nanocrystal’s facets. The strongest flare, bottom
left to top right in Fig. 1, which was present in all �111�
images, is close to the substrate surface normal, which is
the crystal’s (111) direction. The enhancement of intensity
along the direction of facets is a well-known diffraction ef-
fect anticipated by von Laue [28] by expressing the volume
integral for the diffraction of a small object as a surface in-
tegral and noting its singular directions. This is also the
origin of the crystal truncation rods [29] widely studied
in diffraction from surfaces. The fringes are a coherent
diffraction effect that is most pronounced when two facets
are parallel to each other, causing strong interference. We
performed test calculations of the 3D Fourier transform of
polyhedral objects and found flares both with and without
fringes, depending on whether facets were paired. Sec-
tions of the calculated transform could be made to closely
resemble the data by a suitable choice of facets.

We have thus demonstrated that the diffraction pattern
surrounding every Bragg point is given by the square
195505-2
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modulus of the Fourier transform of the shape function,
sG�r�, describing the external shape of the nanocrystals.
For an unstrained crystal, the pattern surrounding a Bragg
peak is the same as that surrounding the origin of recipro-
cal space. However, there are four important advantages
to not using the forward scattering data near q � 0: (i) If
each grain in the sample has a different orientation, their
patterns are superimposed at the origin, but separated at
the Bragg peaks. (ii) Contaminating signals from all other
objects in the beam (including air background) will be
present around the origin. (iii) The direct beam obscures
the center of the pattern, which then has to be synthesized
[9]. (iv) The external shape of the particle, as seen by SEM,
for example, is not necessarily the same as the boundary
of the crystalline core, since it may have a “skin” of dis-
ordered material.

We therefore sought to invert the diffraction pattern to
obtain a 2D real-space image of the shape, G�r�, pro-
jected in the direction of the exit wave vector. We used
data from the (111) specular reflection shown in Fig. 2(a),
for which the oversampling requirement is amply fulfilled,
since each 2D fringe contains over 100 pixels. To define
the origin of reciprocal space, q � h, we located the cen-

FIG. 2 (color). Stages of reconstruction of the diffraction data.
(a) Coherent x-ray diffraction pattern surrounding the specular
(111) Bragg reflection of a 1 mm gold nanocrystal, measured
without a beamstop. (b) Symmetrized data. (c) Data filtered
by multiplication by a circular Gaussian function. (d)–(f ) Cal-
culated diffraction patterns obtained by the inversion algorithm;
the three examples used different random numbers for the initial
phases at each pixel. The color contour levels have the same
logarithmic spacing in all panels.
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ter of the diffraction pattern by averaging it with a ro-
tated copy, producing the symmetric pattern of Fig. 2(b).
To reduce aliasing problems, we applied a Gaussian filter
function with a radial half-width of 41 pixels, as shown in
Fig. 2(c). “Aliasing” refers to the spillover of density from
adjacent unit cells, when the continuous Fourier transform
in Eq. (1) is replaced by a discrete one, which introduces
artificial periodic boundaries [30]. We then inverted the
data using the iterative GS approach [21], consisting of
Fienup’s “error reduction” (ER) [22] and “hybrid input-
output” (HIO) [22,23] methods in alternation with a few
dozen cycles of each. On the first cycle of ER, the ampli-
tude of the diffraction was taken from Fig. 2(c), while
each pixel’s phase was taken to be a random number. The
pattern was then Fourier-transformed to a 2D real-space
image. The complex image was made real by setting
its phase to zero, made positive, then confined to the
�45 3 35�-pixel rectangular “support” region indicated in
Fig. 3(c) by setting the amplitude to zero outside. This
“density-modified” image was transformed back to recip-
rocal space and compared with the data to obtain a residual
x2. For the subsequent cycles, the phases were retained
while the amplitudes were overwritten by the measured
values. The HIO method is similar except that the real-
space step combines some memory of the previous cycle
as well [23] and a limited amount of density is tolerated
outside the support [23]. The residual x2 was found to
drop rapidly during the cycles. Repeating the calculation
with different random phases did not lead to an identical
solution, but a narrow distribution of slightly different x2

FIG. 3 (color). Reconstructed real-space projected images of
the gold nanocrystals displayed on the same scale. (a),(b) SEM
images of larger Au particles. (c) Size of the “support” con-
straint used in the inversion routines. (d)–(f ) Real-space im-
ages obtained by inversion of the data in Fig. 2(c); the Fourier
transforms of these images are the diffraction patterns shown in
Figs. 2(d)–2(f).
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values instead. Inspection of the images and the fitted
diffraction patterns from several runs showed that the re-
sults were extremely similar to each other, as shown in
Figs. 2 and 3(d)–3(f).

For comparison purposes, we show in Figs. 3(a) and
3(b) SEM images of two of the larger gold nanocrystals
from the sample, which show their polyhedral morphol-
ogy. All of the projected images in Figs. 3(c)–3(f) have
the same orientation as the data of Fig. 2 and all images
are printed on the same scale. The aspect ratio of the
inverted images has been restored by adjustment of the
real-space pixel size, Dx, for the dimensions of the discrete
fast Fourier transform (FFT) employed, Nhoriz � 464 and
Nvert � 426, according to

2pN � DqDx . (4)

The calculated diffraction patterns [Figs. 2(d)–2(f)] are
obviously very similar to each other and give the same
level of agreement with the data, x2 � 0.0038, implying
that the rms average pixel intensity differences are 6%.
The diffraction patterns are reproduced well with the most
noticeable differences being at the extreme edges of the
pattern where no intensity was recorded, but where the cal-
culation produces small dense fringes. There is still some
aliasing of the FFT visible in the calculated diffraction pat-
terns, despite the Gaussian filter. The images themselves
have the shapes and sizes expected on the basis of SEM,
and flat edges can be clearly seen. The serrations may in-
dicate the presence of a disordered skin, as noted above,
but this will require further investigation. An unexpected
feature, reproduced in every fit, is the appearance of an
asymmetric “hot spot,” significantly contracted from the
crystal’s boundary, which has about 3 times the apparent
density of the remainder of the grain. Computational tests
with simulated data have reproduced this feature and at-
tributed it to partial coherence of the beam [27].

Coherent x-ray diffraction, coupled with the imaging
capability we demonstrate, has considerable potential for
understanding nanocrystalline materials. The penetrating
power of a hard x-ray beam allows us to look below the
surface of the material, yet retains the ability to separate
the diffraction patterns from each individual grain. This
paper has demonstrated inversion of 2D data to obtain a
projection of the crystal shape, but 3D data should also
be invertible by a sufficiently large calculation to the full
shape in 3D. The x-ray penetration property means we
can image the full volume of the grain with negligible
effects of absorption. In principle, strain fields (projected
onto the imaging q vector) should be imaged through the
imaginary part of the real-space density, which will appear
as a broken symmetry of the diffraction patterns [27]. The
prospect of 3D real-space strain maps of the interior of
materials is opened up by our result.
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