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Role of Dispersive Waves in Collisionless Magnetic Reconnection
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Simulations of collisionless magnetic reconnection show a dramatic enhancement of the nonlinear
reconnection rate due to the formation of an open outflow region. We link the formation of this open
configuration to dispersive whistler and kinetic Alfvén wave dynamics at small scales. The roles of these
two waves are controlled by two dimensionless parameters, which allow us to identify regions of fast
and slow reconnection.
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Recent studies of collisionless magnetic reconnection,
based on both full-particle and two-fluid numerical simula-
tions, have revealed fast rates of reconnection that dramat-
ically exceed those obtained from conventional resistive
magnetohydrodynamic (MHD) models [1]. These fast
rates of reconnection depend critically on the formation
of an open X-line magnetic geometry, in which the width
of the outflow layer d increases with distance from the
X-point [2]. At sufficiently large scales where the MHD
description becomes valid, these solutions resemble the
open X-line configuration analyzed by Petchek [3]. At
smaller scales, however, the breakdown of the MHD model
leads to a region close to the X-point in the simulations
where two-fluid effects dominate. In this region, the elec-
tron and ion motions decouple, and the electron flows are
observed to scale inversely with the width of the layer [4,5].
This allows the total flux of electrons from the layer yd

to remain large even as d becomes very small and leads
to a rate of magnetic reconnection that is insensitive to the
mechanism which breaks the frozen-in condition [4,6].

Past studies have linked this important property of the
electron flows in the non-MHD systems to the Hall term
in the generalized Ohm’s law [1]. This term introduces
the dynamics of whistler and kinetic Alfvén waves into the
system, which have phase velocities yf ~ k (v ~ k2) that
increase with decreasing scale. Here we go beyond past
work to show the dispersive character of whistlers and ki-
netic Alfvén waves also plays the central role in producing
the open outflow region which characterizes two-fluid or
kinetic reconnection. Specifically, in the MHD case, it is
suggested that the acceleration away from the x-line by the
standing Alfvén wave, because of the dispersion properties
of the wave, leads to the collapse of an open outflow con-
figuration into the macroscopic, elongated current sheet.
In contrast, acceleration by the standing whistler or kinetic
Alfvén wave in the open outflow configuration, because of
the quadratic dispersion character, remains stable and fa-
cilitates fast reconnection even in very large systems [2].
We show, based on an analysis of the two-fluid dispersion
relation and nonlinear simulations of reconnection, that the
dynamics are controlled by two dimensionless parameters,
0031-9007�01�87(19)�195004(4)$15.00
which measure the strength of the out-of-plane field and
the plasma pressure. These parameters allow us to define
regions in which the reconnection is fast or slow based on
the presence or absence of quadratic waves at small scales.

We first describe the process that causes the recon-
nection layer to open up in simulations without a strong
out-of-plane (guide) magnetic field, such as those of
Ref. [1]. Our simulations are based on a collisionless
two-fluid model [5] with finite electron inertia. The
initial equilibrium [2] is a double current sheet in the
�x,y� plane with �B � Bxx̂ 1 Bzẑ, Bx � B0�tanh�2y�
w0� 2 tanh�2�y 1 Ly�2��w0� 2 1�, and 8pp 1 �B2

x 1

B2
z� � const. We apply periodic boundary conditions and

an isothermal equation of state. Reconnection is initiated
by a small perturbation. The opening up of the layer occurs
in the early nonlinear phase of reconnection. The mag-
netic separatrix, along with the out-of-plane current and
ion flow channel, opens up within a macroscopic X-like
region. This can be seen in Fig. 1(a), which shows the
out-of-plane current near the magnetic X-point in a simu-
lation with �Lx , Ly� � �10, 5�di, di � c�vpi , mi�me �
300, w0 � di, Bz �t � 0� � 0, 4pn0�Te 1 Ti��
B2

x0 � 1, and n0 � n�y ¿ w0� (the scales are in units di

with n � n0). In the absence of a strong guide field, the
opening process is insensitive to both the ion dynamics
and electron inertia. Our analysis can therefore be carried
out within the framework of the electron MHD (EMHD)
model, in which the dynamics can be described by the two
components of the magnetic field �B � Bzẑ 2 ẑ 3 =c:

≠tBz 1
c

4pne
�c,=2c� � 0 , (1)

≠tc 1
c

4pne
�Bz , c� � 0 , (2)

where �A, B� � ẑ ? =A 3 =B and the electron velocity
is �Ve � 2 �J�ne � �c��4pne�� �ẑ 3 =Bz 1 ẑ=2c�. As
can be seen from the expression for �Ve, the field Bz [times
c��4pne�] is the stream function for the in-plane electron
flows. These flows are, in turn, according to Eq. (2), frozen
into the in-plane magnetic field. The key to understanding
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FIG. 1. (a) Jz; (b) Bz; (c) x .

why the reconnection layer opens up therefore lies within
the structure of Bz.

A contour plot of Bz during the opening-up phase [ear-
lier than Fig. 1(a)] is shown in Fig. 1(b), with the magnetic
separatrix shown as the dashed line. The quadrupole struc-
ture [7] is caused by parallel gradients of the out-of-plane
electron current, which stretch the magnetic field in the
out-of-plane direction. These gradients are strongest just
downstream of the separatrices and lead to the elongated
peaks in Fig. 1(b). Recalling the role of Bz as the elec-
tron stream function, the closed contours associated with
these extrema represent convective-cell flows. These flows
are, in fact, simply the in-plane currents needed to gener-
ate Bz . These flows diverge from the horizontal symmetry
line downstream as they circle the region of strongest Bz .
Because they are frozen into the in-plane magnetic field,
they act to rotate the magnetic field lines and drive open
the reconnection layer.

Such flows do not occur in an ordinary MHD system
without the Hall term. This can be seen by comparing
Eqs. (1) and (2) to the analogous equations of reduced
MHD (see, e.g., Ref. [8] and references therein):

2Dt=
2f 1 �1��4pnmi�� �c, =2c� � 0 , (3)

≠tc 1 �f, c� � 0 . (4)

Noting the similarity of Eqs. (1) and (3), one would expect
Bz in the EMHD system, for a given profile of c, to qual-
itatively resemble the vorticity =2f in the MHD system.
An important difference then arises in Eq. (2), however, in
which the vorticitylike quantity Bz convects the in-plane
flux rather than the usual velocity potential f, as in Eq. (4).
Qualitatively, therefore, EMHD is like MHD except the
“vorticity” convects c. The impact of this is illustrated
195004-2
in Fig. 1(c). Given the Bz field of Fig. 1(b), we plot the
stream lines (contour lines) of an effective potential x

satisfying Bz � 2=2x. The stream lines of x, which
would convect the in-plane flux in an MHD-like system,
do not exhibit the convective-cell flows associated with Bz

that open the layer in the EMHD system.
The essential differences between the MHD and two-

fluid systems can also be understood in more physical
terms using a simple model, which treats the reconnected
field lines downstream of the x-line as a half-wavelength
segment of a nonlinear standing wave. Flows which result
from the release in the stress of this field line are calcu-
lated. Taking d to be the distance between the separatri-
ces bounding the outflow region, the reversal of Bx across
the layer is modeled as Bx � Bx0 sin�ky� with k � p�d,
where d � x is assumed to increase with distance from
the x-line. We now argue that in the MHD model such
an initial open magnetic configuration will collapse with
time to form an extended Sweet-Parker layer. The outflow
velocity Vx in this standing wave configuration is given by
cAx cos�ky� sin�vt�, v � kcAy , cAy � By0��4pmin�1�2,
where the amplitude cAx � Bx0��4pmin�1�2 is the usual
outflow velocity based on the “upstream” strength of the
magnetic field. In an open x-point geometry close to the
x-line, the components of the magnetic field, Bx and By ,
both increase with increasing x [2,9], and thus so does
the peak MHD velocity Vx � cAx � Bx . Steady state
conditions are impossible under these circumstances, as
can be seen (for example) from Faraday’s law evaluated
along the center of the outflow region �y � 0�: �By �
2≠x�VexBy�, where in MHD Vex � Vx. The increase of
VexBy � BxBy with distance x in the MHD case implies
�By , 0, i.e., a collapse of the layer. (Similar conclu-
sions are reached in Refs. [9,10] following different ar-
guments.) The acceleration by the whistler wave, on the
other hand, because of its quadratic dispersion property, is
very different. The outflow velocity Vex of the electrons
is given by kdicAx cos�ky� sin�vt�, where v � k2dicAy

is the whistler frequency. In this case the amplitude of
the whistler wave, proportional to kcAx , in fact decreases
with distance downstream from the x-line, consistent with
the electron flows in the simulations [2,5] as well as the
requirements of steady state behavior (i.e., the constancy
of VexBy). The extra factor of k, which is linked to the
quadratic dispersion character of the whistler wave, there-
fore alters the structure of the electron flow away from the
x-line and allows the open X-point magnetic geometry to
persist in steady state.

The preceding discussion suggests whistler dynamics
play a unique role in mediating fast reconnection, but this
is not the case. Essentially the same arguments apply to
systems in which the physics of small scales is controlled
by kinetic Alfvén waves rather than whistler waves. This
is consistent with simulations of reconnection based on
the reduced MHD model with finite rs � cs�vci effects
[8,11,12]. Excluding electron inertia, this model is given
by Eq. (3) and a modified version of Eq. (4):
195004-2
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≠tc 1 �f 2 r2
s =2f, c� � 0 . (5)

These equations describe the low-frequency (v ø vci)
dynamics of low-b systems with a strong equilibrium
Bz field, and thus by assumption exclude whistler waves.
(The conditions under which this assumption is valid are
examined below.) The kinetic Alfvén wave, satisfying
v � krskkcA for krs ¿ 1, is retained through the terms
proportional to rs in Eq. (5). The simulations show the
addition of these terms cause the reconnection layer to
open up and lead to fast rates of reconnection comparable
to those observed in configurations without a guide field.
The similarity can be quantified. At sub-rs scales where
r2

s =2 . 1, the structure of Eqs. (3) and (5) reduces to that
of the EMHD system Eqs. (1) and (2) with the identifica-
tion =2f $ Bz . The same arguments given above in the
EMHD system can therefore also account for fast recon-
nection in the simulations of Eqs. (3) and (5), with the role
of whistler dynamics replaced by the physics of the kinetic
Alfvén wave.

Having established that whistler and kinetic Alfvén
wave dynamics can play similar roles, we now address the
relative contributions of the two. Motivated by our earlier
discussion relating standing waves to the acceleration
195004-3
FIG. 2. Parameter space for quadratic waves.

of the plasma away from the x-line, we first approach
this question in the context of linear waves with wave
vector �k and a magnetic field at an arbitrary angle with
respect to �k. Our analysis is based on the two-fluid model
used in the simulations, which in the linear limit yields a
cubic dispersion relation in v2 (see [13] and references
therein):
y6 2

∑
c2

mk

c2
Ak

1
1
D

µ
1 1

k2d2
i

D

∂∏
y4 1

1
D

∑
c2

mk

c2
Ak

1
c2

s

c2
Ak

µ
1 1

k2d2
i

D

∂∏
y2 2

c2
s

D2c2
Ak

� 0 , (6)
where y � v��kcAk� � v��kkcA�, c2
Ak � B2

k��4pr�,
Bk � �B ? �k�k, D � 1 1 k2d2

e , de � c�vpe, c2
A �

B2��4pr�, c2
s � �Te 1 Ti��mi , c2

mk � c2
A�D 1 c2

s ,
and c2

m � c2
A 1 c2

s . The whistler root, satisfying
y2 ¿ c2

m�c2
Ak , can be extracted by balancing the first and

second terms in Eq. (6):

y2 	 k2d2
i ;

c2
m

c2
Ak

ø k2d2
i ø

d2
i

d2
e

. (7)

Defining dk � dicAk�cm, this mode therefore occurs in
the scale range de , k21 , dk and requires d2

e ø d2
k , or

equivalently �c2
m�c2

Ak� �me�mi � 
 mk ø 1. The kinetic
Alfvén root, on the other hand, arises in the lower phase
velocity regime 1 ø y2 ø c2

s �c2
Ak and therefore requires

c2
s �c2

Ak �� bk�2� ¿ 1. This root is obtained by balancing
the second and third terms in Eq. (6):

y2 	
c2

s

c2
m

k2d2
i ;

c2
m

c2
s
ø k2d2

i ø min

Ω
d2

i

d2
e
,

c2
m

c2
Ak

æ
. (8)

Defining ds � dics�cm (	 rs � cs�vci for b ø 1), the
kinetic Alfvén root is thus obtained in the scale range
max�de, dk � , k21 , ds and requires d2

s ¿ max�d2
e , d2

k �
or bk�2 ¿ max�mk , 1�. [The requirement bk ¿ 1 is not
apparent in the reduced system, Eqs. (3) and (5). However,
since the kinetic Alfvén wave satisfies v $ kcAk, the con-
dition v , vci needed for the validity of that model re-
quires k , vci�cAk. Combining this with k . 1�rs leads
to bk�2 . 1.] Note the characteristic spatial scales of the
kinetic Alfvén wave are necessarily larger than those of the
whistler.

In summary, the presence of waves with y ~ k depends
on the relationship of three scales: ds, de, and dk. These
yield two independent parameters, d2

s �d2
k � c2

s �c2
Ak �

bk�2 and d2
e�d2

k � �c2
m�c2

Ak� �me�mi� 
 mk, and four
regimes: mk ø 1, bk�2 ¿ 1, both whistler waves and
KA waves are allowed; mk ø 1, bk�2 & 1, whistler
waves only; mk * 1, bk�2 ¿ mk, kinetic Alfvén waves
only; mk * 1, bk�2 & mk, no quadratic waves. The
resulting regimes are shown in Fig. 2.

To interpret the results of reconnection simulations
based on this wave analysis, we take �k � kŷ and �B �
Byŷ 1 Bzẑ so that Bk is By and Bz is the out-of-plane
magnetic field. Unfortunately, By is not a parameter
of the simulation but develops as a result of reconnec-
tion. Generally, By will therefore increase with time
but will be limited by Bx0, the maximum value of the
component of �B which reconnects. The variation of
By with time defines a trajectory in the my, by plane
of Fig. 2 given by my � me�mi 1 Cby�2 	 Cby�2,
C � �me�mi� �1 1 2�bz�. For C , 1 (see lower dotted
line in Fig. 2), the coupling to dispersive waves will occur
even for small values of By , while for C . 1 (upper dotted
line), the coupling to the whistler requires a threshold in
By to be exceeded before fast reconnection onsets (the
195004-3
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FIG. 3. ≠tc for (a) Bz�Bx � 30, (b) Bz�Bx � 3, and
(c) b � 0.

dotted line enters the lower left quadrant). In any case
we presume that at late time By � Bx0 and proceed to
compare with the simulations by considering Bk ! Bx0,
mk ! mx, bk ! bx in Fig. 2, keeping in mind that the
replacement of By ! Bx0 is used only as a convenient
parametrization. In the simulations, By varies spatially and
is in fact typically at most only some fraction of Bx0 [2].

The two-fluid simulations are carried out with mi�me �
82.6 unless otherwise noted and �Lx , Ly� � �20, 10�di . In
the initial equilibrium, w0 � di and the plasma and mag-
netic pressures are both uniform. We denote the parameters
far away from the current sheets as Bx � Bx0, Bz � Bz0,
n � n0, etc. Figures 3(a) and 3(b) show the nonlinear
reconnection rates obtained from the simulations for
Bz0�Bx0 � 30 [Fig. 3(a)] and Bz0�Bx0 � 3 [Fig. 3(b)],
as a function of bx�2 � 4p�Ti0 1 Te0�n0�B2

x0. The cor-
responding values of mx � �me�mi� �B2

0�B2
x0 1 bx�2�

are large in Fig. 3(a) (mx 	 10.9 11.3� and small in
Fig. 3(b) (mx 	 0.12 0.28�. In Fig. 3(b), the whistler/ki-
netic Alfvén wave regime lies to the right of the dashed
line at bx�2 � 1 and exhibits the fastest rates of recon-
nection (≠tc 	 0.12). These rates drop by about a factor
of 2 (≠tc � 0.06) in either the whistler-only regime
[Fig. 3(b), left of dashed line] or the kinetic-Alfvén-only
regime [Fig. 3(a)], right of dashed line]. This decline is
reflected in a decrease of the layer opening angle. The
essential point, however, is that the reconnection layers in
all these cases do open up downstream from the X-point.
Figure 4(a), for example, shows results for bx�2 � 30,
Bz0�Bx0 � 30. This is not the case in the simulations at
bx�2 ø 1, mx ¿ 1 [Fig. 3(a), left of dashed line] where
the reconnection rate decreases sharply. The layers in these
simulations do not open. Figure 4(b) shows results from
the most extreme case bx � 0, Bz0�Bx0 � 30. Finally,
Fig. 3(c) shows the reconnection rates at fixed b � 0
as a function of mx for two mass ratios, mi�me � 82.6
(squares) and mi�me � 300 (triangles). The fact that
the two curves are quite similar confirms that mx
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FIG. 4. Jz for Bz�Bx � 30: (a) bx�2 � 30; (b) bx � 0.

[� �me�mi�B2
z�B2

x at b � 0], rather than simply [14]
Bz�Bx, is the parameter which controls the suppression
of the whistler. The dominance of mx as the control
parameter is consistent with the simulation data presented
in Ref. [15].

In summary, fast reconnection in collisionless systems
depends on the dynamics of whistler and/or kinetic Alfvén
waves at small scales. The condition for whistler dy-
namics to be present, B2

x . B2�1 1 b�2�me�mi, is sat-
isfied in many systems of physical interest. Assuming this
condition is satisfied, the physics at the smallest scales
�c�vpe characteristic of the dissipation region are always
governed by whistler waves. If the plasma b is suffi-
ciently high (b * B2

x�B2), then kinetic Alfvén dynamics
also play a role at somewhat larger scales. Reduced MHD
models, which can describe kinetic Alfvén waves but not
whistler waves, are therefore inadequate to describe recon-
nection in such systems. In simulations with very small
B2

x ø B2me�mi and b ø me�mi , no quadratic waves can
exist, and the reconnection rate is very small.
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