
VOLUME 87, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 5 NOVEMBER 2001

194501-1
An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion
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We use asymptotic analysis and a near-identity normal form transformation from water wave theory
to derive a 1 1 1 unidirectional nonlinear wave equation that combines the linear dispersion of the
Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH)
equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still
preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions
contain both the KdV solitons and the CH peakons as limiting cases.
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Water wave theory first introduced solitons as solutions
of unidirectional nonlinear wave equations, obtained via
asymptotic expansions around simple wave motion of the
Euler equations for shallow water in a particular Galilean
frame [1]. Later developments identified some of these
water wave equations as completely integrable Hamilto-
nian systems solvable by the inverse scattering transform
(IST) method, see, e.g., [2]. We shall discuss the follow-
ing 1 1 1 quadratically nonlinear equation in this class for
unidirectional water waves with fluid velocity u�x, t�:

mt 1 c0ux 1 umx 1 2mux � 2guxxx . (1)

Here m � u 2 a2uxx is a momentum variable, partial
derivatives are denoted by subscripts, the constants a2 and
g�c0 are squares of length scales, and c0 �

p
gh is the

linear wave speed for undisturbed water at rest at spatial
infinity, where u and m are taken to vanish. (Any con-
stant value u � u0 is also a solution.) Equation (1) was
first derived by using asymptotic expansions directly in
the Hamiltonian for Euler’s equations in the shallow water
regime and was thereby shown to be bi-Hamiltonian and
IST integrable in [3]. Its periodic solutions were treated in
[4,5], and references therein. Before [3], families of inte-
grable equations similar to (1) were known to be derivable
from the theory of hereditary symmetries [6]. However,
(1) was not written explicitly nor derived physically as a
water wave equation, and its solution properties were not
studied before [3]. See [7] for an insightful discussion of
how the integrable equation (1) relates to the theory of
hereditary symmetries.

The interplay between the local and nonlocal linear dis-
persion in this equation is evident in its phase velocity
relation, v�k � �c0 2 gk2���1 1 a2k2�, for waves with
frequency v and wave number k linearized around u � 0.
For g�c0 , 0, short waves and long waves travel in the
same direction. Long waves travel faster than short ones
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(as required in shallow water) provided g�c0 . 2a2.
Then the phase velocity lies in v�k [ �2g�a2, c0�.

Equation (1) is not Galilean invariant. Upon shifting the
velocity variable by u0 and moving into a Galilean frame
j � x 2 ct with velocity c, so that u�x, t� � ũ�j, t� 1

c 1 u0, this equation transforms to

m̃t 1 ũm̃j 1 2m̃ũj � 2c̃0ũj 2 g̃ũjjj , (2)

with c̃0 � �c0 1 2c 1 3u0�, g̃ � �g 2 u0a2�, and ap-
propriately altered boundary conditions at spatial infinity.
Hence, we must regard Eq. (1) as a family of equations
whose linear dispersion parameters c0 and g depend on the
appropriate choice of Galilean frame and boundary condi-
tions. The parameters c0 and g may even be removed by
making such a choice, as for g in [3]. In the following
we will use only transformations that leave the boundary
condition u � 0 at spatial infinity invariant.

This paper reports two main results. First, we identify
how the dispersion coefficients for the linearized water
waves appear as parameters in the isospectral problem for
this IST-integrable equation. We also determine how the
linear dispersion parameters a, c0, and g in (1) affect the
isospectral content of its soliton solutions and the shape
of its traveling waves. Second, we rederive Eq. (1) as a
water wave equation and prove that it is correct to one
order higher than for Korteweg-deVries (KdV) by using
standard methods of asymptotic expansions and near-
identity transformations. This new derivation and the
analysis we present here attaches additional physical
meaning to Eq. (1) in the context of asymptotics for
shallow water wave equations. By means of a near-
identity transformation it is shown that (1) is asymptoti-
cally equivalent to the fifth order KdV equation.

Equation (1) restricts to two separately integrable soliton
equations for water waves. When a2 ! 0 this equation
becomes the KdV equation
© 2001 The American Physical Society 194501-1
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ut 1 c0ux 1 3uux � 2guxxx , (3)

which for c0 � 0 has the famous soliton solution u�x, t� �
u0sech2��x 2 ct�

p
u0�g�2�, c � c0 1 u0, see, e.g., [2].

Instead, choosing the Galilean frame for which g ! 0 in
Eq. (1) implies the Camassa-Holm (CH) equation

ut 1 c0ux 2 a2uxxt 1 3uux � a2�2uxuxx 1 uuxxx� ,

which for c0 � 0 has the “peakon” soliton solutions
u�x, t� � ce2jx2ctj discovered and analyzed in [3,8].

Equation (1) is bi-Hamiltonian and, hence, isospec-
tral.—The term bi-Hamiltonian means the equation may
be written in two compatible Hamiltonian forms, namely,
as mt � 2B2�dH1�dm� � 2B1�dH2�dm� with

H1 �
Z

u2 1 a2u2
x dx,

B2 � ≠xm 1 m≠x 1 c0≠x 1 g≠3
x ,

H2 �
Z

u3 1 a2uu2
x 1 c0u2 2 gu2

x dx,

B1 � ≠x 2 a2≠3
x.

These bi-Hamiltonian forms restrict properly to those for
KdV when a2 ! 0 and to those for CH when g ! 0.
Compatibility of B1 and B2 is assured since ≠xm 1 m≠x ,
≠x , and ≠3

x are all mutually compatible Hamiltonian opera-
tors, see, e.g., [12]. From this viewpoint, g and a2 are
deformation parameters for the Riemann equation ut 1

3uux � 0. No further deformations of these Hamiltonian
operators involving higher order partial derivatives would
be compatible with B2 [12]. Related results are discussed
in [13,14].

By the standard Gelfand-Dorfman theory [15], its
bi-Hamiltonian property implies that the nonlinear equa-
tion (1) arises as a compatibility condition for two linear
equations, namely, the isospectral eigenvalue problem,

l

µ
1
4

2 a2≠2
x

∂
c �

µ
c0

4
1

m�x, t�
2

1 g≠2
x

∂
c , (4)

and the evolution equation for the eigenfunction c,

ct � 2�u 1 l�cx 1
1
2

uxc . (5)

Compatibility of these linear equations �cxxt � ctxx� and
isospectrality �dl�dt � 0� imply Eq. (1). Consequently,
the nonlinear water wave equation (1) admits the IST
method for the solution of its initial value problem, just
as the KdV and CH equations do. In fact, the isospectral
problem for Eq. (1) restricts to the isospectral problem for
KdV (i.e., the Schrödinger equation) when a2 ! 0, and it
restricts to the isospectral problem for CH discovered in
[3] when g ! 0.

Defining a new spectral parameter m22 � g 1 la2

yields a spectral problem in the same form as for CH,∑
≠2

x 2
1

4a
1 m2

µ
m
2

1
g 1 c0a2

4a2

∂∏
c � 0 ,
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which is analyzed and discussed in [13,17]. The con-
tinuous spectrum lies in m22 [ �0, g 1 c0a2�, which is
non-negative for shallow water dispersion. In this form of
the isospectral equation, the limit to KdV is singular.

Spectral content and solution behavior.—Provided m
decreases sufficiently rapidly at spatial infinity, Eq. (4) has
both continuous and discrete spectra. These spectral com-
ponents correspond to the two different types of solution
behavior available for Eq. (1). The continuous spectrum of
the isospectral eigenvalue problem (4) spans the band of al-
lowed linearized phase speeds, namely, l [ �2g�a2, c0�.
This continuous spectrum corresponds to radiation (linear
waves). The discrete spectrum of (4) lies above this band,
with l . c0 $ 0. The discrete spectrum corresponds to
the soliton sector of the solution space. This is also
what is seen in numerical computations [18]. In the zero-
dispersion limit for both c0 ! 0 and g ! 0, the cor-
responding isospectral problem for the CH equation has
purely discrete spectrum representing only peakon solu-
tions [3].

The derivation of (1) from shallow water wave asymp-
totics is similar to Whitham’s derivation of the KdV equa-
tion [1], except that we keep terms of second order in
the small parameters e1 � a�h and e2 � h2�l2. Here
e1 $ e2 . e

2
1 , a, h, and l denote the wave amplitude, the

mean water depth, and a typical horizontal length scale
(e.g., a wavelength), respectively. We shall sketch the
derivation here and give details elsewhere [18]. We start
with Laplace’s equation for the velocity potential of an
inviscid, incompressible, and irrotational fluid moving in
a vertical plane under gravity with an upper free surface,
as, e.g., in [1], p. 464. Length is measured in terms of l,
height in h, and time in l�c0. The elevation h is scaled
with a, and fluid velocity u is scaled with c0a�h.

The result of the expansion is the equation for the surface
elevation h [1], p. 466 (the higher order terms can, e.g.,
be found in [19]),

0 � ht 1 hx 1
3
2

e1hhx 1
1
6

e2hxxx 2
3
8

e2
1h2hx

1 e1e2

µ
23
24

hxhxx 1
5
12

hhxxx

∂
1 e2

2
19
360

hxxxxx .

(6)

Next, following Kodama [20,21] we shall apply the
near-identity transformation, h � u 1 e1f�u� 1 e2g�u�,
to the h equation (6) and seek functionals f�u� and g�u�
such that the transformed equation is the integrable u
equation (1), at order O�e2

2 �. Thus, we seek conditions
for the existence of a near-identity transformation, such
that f�u� and g�u� ensure the equivalence of Eqs. (6) and
(1) at order O�e2

2 �. At this order, the functionals f�u�
and g�u� should generate the terms uux, uxuxx, uuxxx ,
and uxxx . The allowable forms turn out to be uxx for
g�u� and both u2 and ux≠21u for f�u�, where ≠21 means
integration in x. Hence, we set

h � u 1 e1�a1u2 1 a2ux≠21
x u� 1 e2buxx , (7)
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where a1, a2, and b are constants to be determined. Ko-
dama’s near-identity transformation thus implies the nor-
mal form of the u equation to which the h equation (6) is
equivalent at O�e2

2�. Other recent applications of this nor-
mal form approach are discussed in [21,22]. The physical
interpretation [23] of the nonlocal term in the transforma-
tion is that it is responsible for a change in the phase shift
of the two soliton solution of the original and transformed
equations.

The transformation to (1) needs to produce a term of
the form uxxt . After applying the Kodama transformation
and eliminating all higher time derivatives this term is ob-
tained by applying the Helmholtz operator I 2 e2n≠2 to
the resulting equation. Alternatively one could keep the
uxxt term that appears from the transformation and only
partially transform its t derivative. The two procedures
are equivalent. Application of the Helmholtz operator in-
troduces another free parameter n into the problem, which
is necessary in order to obtain (1) in the end. In particu-
lar, it is only the special value n � 19�60 which removes
the highest derivative of fifth order. In the remainder of
the paper, n is fixed to this value. With this choice, and
with a1 � 7�20, a2 � 21�5, and b � 1�30, we obtain
the equation

mt 1 ux 1
e1

2
�umx 1 2mux� 1 e2

3
20

uxxx � 0 , (8)

where m � u 2 e2nuxx .
In order to compare predictions, the solutions u must

be transformed back to h using (7). However, since the
derivation used not only the transformation (7) but also
involved application of the Helmholtz operator, it is not
clear that this is sufficient. The inverse transformation u �
u�h� of the same form as (7) with u and h interchanged
is substituted into (8) in order to recover (6). We find that
the coefficients just reverse their signs. We conclude that
(1) is equivalent to the shallow water wave equation (6) up
to, and including, terms of O �e2

2 �.
Note that the removal of the highest order term was

made possible by introducing the additional parameter n
in the Helmholtz operator. In [22] this term was removed
by another term of the form xut in the Kodama transfor-
mation. This term, however, is not uniformly bounded and
moreover changes the dispersion relation; we therefore dis-
card its use. By using only the uniformly bounded terms
in the Kodama transformation the shallow water equation
(6) can be transformed into the integrable fifth order KdV
equation [19].

Equation (8) is transformed to the fifth order KdV equa-
tion by the above transformation with the choice a1 �
19�10, a2 � 19�20, and b � 19�30. We conclude that
(1) is asymptotically equivalent to the integrable fifth order
KdV equation, and both of them are equivalent to (6), up to
and including order O �e2

2�. The equivalence of (1) to the
fifth order KdV equation breaks down in the peakon limit,
g ! 0, c0 ! 0, because the transformation as well as the
resulting equation contains terms divided by g 1 c0a2.
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To recover (1) from (8) we reintroduce dimensional vari-
ables to find a2 � h2n and g � 23c0h2�20. Hence, the
normalized phase speed is

v

kc0
�

µ
1 2

1
6

k2h2

1 1 nk2h2

!
. (9)

The normalized phase speed for water waves isp
tanh�kh��kh, see, e.g., [1]. Expanding this and the

previous result for the phase speed in a Taylor series in
wave steepness kh around kh � 0 yields agreement up to
quintic order, provided n � 19�60, the previously found
remarkable value of n. The form of Eq. (1) originally ap-
pearing as Eq. (3) in [3] is recovered by setting n � 1�3,
which is nearly the optimal value.

The traveling wave solution is obtained by the ansatz
u�x, t� � u�s�, with s � x 2 ct, after which Eq. (1) can
be integrated twice. The solution whose velocity vanishes
at spatial infinity is given by

�c 1 g�a2 2 u�a2�du�ds�2 � �c 2 c0 2 u�u2. (10)

When the limits of the radiation band coincide at zero,
the peakon traveling wave equation reemerges. Otherwise,
the traveling wave solution can be expressed implicitly
as a quadrature, or in parametric form via a Sundmann
transform of the independent variable �ds�dt�2 � �c 1

g�a2 2 u�a2, as

u�t� � ûsech2At, A �
p

û�2,

s�t� � 2a

q
D�û sinh21

√
sinhAtp
1 2 û�D

!

2 2a tanh21

µ
1 1

D�û 2 1
tanh2At

∂21�2

,

where û � c 2 c0 and D � c0 1 g�a2. The curvature
at the maximum is 2

1
2 û2��g 1 c0a2� � 23û2��c0h2�,

which is independent of n. Introduction of n broadens
the width of the solution as compared to the pure sech2

solution of KdV. For c0 ! 0 and g ! 0 this smooth
family approaches the peakon solution. However, this limit
cannot be attained for physical water waves because it
implies vanishing mean depth, h ! 0.

In order to compare with experimental findings the so-
lution has to be transformed from u back to h. To accom-
plish this, we expand u in a series of sech2bs, which gives

u�s� � a sech2bs 1
19
20

e1a2 sech4bs ,

where b2 � 3ae1��4e2� and c � 1 1 e1a�2 1
19
40e

2
1a2

in s � x 2 ct. Applying the Kodama transformation
gives

h�s� � a

µ
1 1

1
2

e1a

∂
sech2bs 1

3
4

e1a2 sech4bs .

This is the same solution for (6) as found in [19] by solv-
ing the fifth order KdV equation (KdV5). This again shows
that KdV5 and (1) are asymptotically equivalent. Normal-
izing the height and comparing to the KdV traveling wave
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shows that this wave form is slightly broadened and travels
faster, in agreement with experimental findings [24].

Discussion.—The water wave equation (1) combines the
elements of linear dispersion in KdV with the nonlinear,
nonlocal dispersion of CH. This combination is IST inte-
grable because it retains the bi-Hamiltonian and isospectral
properties of the KdV and CH equations. The dispersion
parameters a, c0, and g knit the KdV and CH equations
into a family of integrable equations and also appear to-
gether in the eigenvalue problem (4).

As recognized already in [3], the dispersion parameters
c0 and g in (1) are linked to each other by combined ve-
locity shifts and Galilean boosts. Although these trans-
formations preserve the isospectral property of the CH
equation, they alter its isospectral content in two ways.
First, they add to the discrete CH peakon spectrum a band
of continuous spectrum near the origin. This isospectral
band corresponds to linear radiation and spans the allowed
range of linear phase velocity. Second, either c0 or g
nonvanishing breaks the reflection-reversal symmetry of
the CH equation for c0 � 0 that allows coexistence of its
generalized-function peakon and antipeakon soliton solu-
tions traveling in opposite directions. Thus, adding linear
dispersion breaks this discrete symmetry and removes the
antipeakon solutions, while it also rounds the peaks of the
peakon solutions; thereby, regularizing them into ordinary
solitons, plus linear radiation.

This Letter confirmed that (1) is a genuine shallow wa-
ter equation by rederiving it as the next equation beyond
KdV at order O�e2

2 � in an asymptotic expansion of the
Euler equations. This is achieved by using a near identity
transformation (7) due to Kodama [20] and by applying
the Helmholtz operator. Thus, the equation originally dis-
covered in [3] via asymptotic expansion of the Euler fluid
Hamiltonian is recovered in the family of equations de-
rived here for the case n � 1�3. The optimal value n �
19�60 makes the equation (i) integrable, (ii) asymptotically
equivalent up to order O �e2

2� to the integrable fifth order
KdV equation and to the shallow water wave equation (6),
and (iii) most accurate in its linear dispersion relation. An
improved traveling wave for shallow water waves is calcu-
lated as a result.
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