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Bridges of Periodic Solutions and Tori in Semiconductor Lasers Subject to Delay
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For semiconductor lasers subject to a delayed optical feedback, branches of steady states sequentially
appear as the feedback rate is increased. But branches of time-periodic solutions are connecting pairs of
steady states and provide bridges between stable and unstable modes. All bridges experience a change of
stability through a torus bifurcation point. Close to the bifurcation point, the torus remains localized near
a specific fixed point in phase space. As the feedback rate increases, the torus envelope suddenly unfolds
and its trajectory visits two or more unstable fixed points, anticipating the rich dynamics observed at

larger feedback rates.
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Nonlinear problems with a delayed feedback appear in
many areas of science and engineering. They are modeling
problems in chemistry (diffusion through a membrane, il-
luminated thermochemical reaction [1]), in biology (blood
cell production [2,3], neural control [4], respiratory physi-
ology [5]), in the medical sciences (drug delivery [6]), in
mechanics (ship rolling [7]), as well as many other physi-
cal problems [8]. In nonlinear optics, a delayed feedback
often plays an active role in the device. It may be used
to stabilize a laser [9] or to deliberately produce a chaotic
output [10]. It may also considerably diminish the per-
formances of semiconductor lasers. These lasers appear in
many applications (laser printer, CD player, code bar read-
ing at the supermarket) and are highly sensible to delayed
optical feedback. A weak optical feedback from external
reflectors such as the front facet of an optical fiber, a mir-
ror, or an optical disk is enough to destabilize the normal
output of the laser.

For lasers controlled by feedback or subject to an un-
wanted feedback as well as other physical or biological
systems modeled by delay-differential equations, the delay
may have a stabilizing or a destabilizing effect. In many
cases, however, we observe cascading instabilities which
lead to complex dynamical regimes. Combined analyti-
cal and numerical studies of delay-differential equations
(DDE) remain rare and it is not surprising that a lot of
the current efforts on DDE concentrate on specific prob-
lems in nonlinear optics. In particular, a semiconductor
laser subject to a delayed optical feedback is a key prob-
lem for all semiconductor laser devices. Most of our un-
derstanding of its behavior comes from numerical studies
[11] . One interesting dynamical regime, called low fre-
quency fluctuation or LFF, has attracted a lot of attention.
If a semiconductor laser operates close to its threshold, the
laser power exhibits irregular oscillations with short and
long time scales. The long time scale is about 100 ns and
is characterized by sudden intensity dropouts. The short
time scale is of the order of 100 ps and is much harder
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to identify [12]. Recent experimental investigations have
considerably contributed to our understanding of LFF: a
stable steady state mode of operation called the maximum
gain mode always exists as an alternate to LFF [13] and
LFF appears gradually as the number of modes increases
[14]. Theoretically, new ideas have also appeared. We may
benefit from the fact that LFF appears with a low number
of modes and investigate the bifurcation diagram analyti-
cally [15]. We may simulate the laser equations for a large
range of values of the physical parameters and find condi-
tions for which LFF is almost time periodic (locked states
[16]). Last, we may look for simplified forms of the laser
equations which produce outputs close to LFF [17,18].

As the feedback rate is progressively increased from
zero, branches of steady-state intensities appear and are
called external cavity modes. Each branch exhibits one of
more Hopf bifurcations points which are followed by more
complex bifurcations. Direct time integration of the laser
equations is limited to the stable solutions. Well-known
software packages for bifurcation analysis such as AUTO
[19] are capable of following stable and unstable time-
periodic solutions but are not available for DDE. In this
Letter, we use a software package for numerical continua-
tion and bifurcation analysis specially developed for DDE
[20] and we find a simple bifurcation scenario as the feed-
back rate increases. Specifically, we find closed branches
of periodic solutions connecting pairs of isolated steady
states and torus bifurcation points which mark the begin-
ning of richer time-dependent regimes.

A single mode semiconductor laser subject to weak
optical feedback is modeled by the Lang and Kobayashi
equations [21]. In dimensionless form, they are given by

dy

o (1 +ia)YZ + kexp(—iwen)Y(t — 1), (1)

T‘;—f =P —-2Z—-(1+22)|Y) )
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where Y and Z are the complex electrical field and the ex-
cess carrier number, respectively [17]. Time ¢ is measured
in units of the photon lifetime 7, (+ = ¢/7,). The exter-
nal round-trip time is normalized as 7 = 2L/cT,, where
L is the distance laser mirror and c is the speed of light.
wo = w7, is the dimensionless angular frequency of the
solitary laser w, and k = yr, is the normalized feed-
back rate. « is the linewidth enhancement factor, and
T = 1,/7, is the ratio of the carrier 7, to photon life-
time 7,. P denotes the pumping rate above threshold. For
all our numerical simulations, we consider k as the bifur-
cation parameter and the values of the fixed parameters
are the same as in [14], ie., T = 7= 10°, P = 1073,
a = 4, and wgr = —1. We may simplify these equations
by introducing the new variables s, E, and N defined by
s =1t/7,E = 7'2Y and N = 7Z. Equations (1) and (2)
then become

E
Z—s = (1 + ia)NE + nexp(—iwor)E(s — 1), (3)
dN _
q$=P—N—(1+ZT 'N)IEI?, 4)

where 7 = 7k, p = 7P, and ¢ = T7~'. The values of
the fixed parameters now are ¢ = 1, p = 1, 1 =103,
a =4, wgt = —1, and 7 is the bifurcation parameter.
Equations (3) and (4) are simpler to integrate numerically
because there is no more a large parameter multiplying
dN/ds. We may also neglect the 7~ ! small term and
reduce the number of parameters from five to four.

A basic solution of Egs. (3) and (4), called an external
cavity mode or ECM solution, corresponds to a single
frequency solution of the form

E = Aexpli(A — wo7)s] (5)

and N = B where A, A, and B are constants. The intensity
|E|?> of any ECM mode solution is thus constant and equals
|A]?. Substituting (5) into Eqgs. (3) and (4) leads to con-
ditions for A, B, and A which can be analyzed. Specifi-
cally, the ECM frequency A satisfies the transcendental
equation

A — wor = —n[a cos(A) + sin(A)] (6)

and A, B are simply related to A [15,22]. By analyzing
Eq. (6) in the implicit form n = 5(A), we note that the
number of ECM solutions increases with 1. Except for the
first ECM solution which appears at 7 = 0 or ECM solu-
tions that bifurcate from A = 0, all ECM solutions appear
by pair and emerge from limit points. One branch of so-
lutions is always unstable (called antimode) and the other
branch of solutions is stable (called mode) but may ex-
perience a change of stability through a Hopf bifurcation.
Hopf bifurcation points appear on all (stable or unstable)
branches but cannot be determined analytically [22].

In general, bifurcation diagrams are obtained by numeri-
cal integration of the laser equations changing gradually
the feedback rate [14]. The simulations are limited to the
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stable regimes and require several runs with different ini-
tial conditions in order to detect isolated and/or coexisting
solutions. Computations can be costly and have motivated
alternative techniques such as the development of numeri-
cal continuation methods appropriate for delay-differential
equations [20]. A continuation method detects Hopf bifur-
cation points in parameter space, follows stable or unstable
branches of time-periodic solutions, and determines their
stability changes. Figure 1 shows the bifurcation diagram
of the steady and time-periodic solutions. Branches of pe-
riodic solutions are connecting pairs of mode-antimode so-
lutions. These bridges start and terminate at distinct Hopf
bifurcation points (shown by circles in Fig. 1). They also
overlap points where a mode and an antimode admit the
same intensity. In the limit of large values of g, Egs. (3)
and (4) admit mixed ECM solutions of the form

E = Ayexpli(A] — woT)s] + Ayexpli(Ay — wo7)s]
(7

in the vicinity of these points [15]. A; and A, are two
single ECM frequencies satisfying Eq. (6) evaluated at the
equal intensity point. Because ¢ = 1, the approximation
(7) is only indicative. Note from (7) that |E|? is oscillating
in time with a frequency equal to |[A; — A,|. In Fig. 2, we
consider the first bridge of periodic solutions and compare
the extrema of |E| using (7) with the numerically com-
puted solution. The qualitative agreement between these
solutions suggests that bridges can be understood physi-
cally as combinations of two ECMs such as (7). We also
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FIG. 1. Bifurcation diagram of the steady and time-periodic
solutions. Full and dashed lines correspond to stable and un-
stable solutions, respectively. Circles, triangles, and squares
denote Hopf, period doubling, and torus bifurcation points, re-
spectively. Closed branches of periodic solutions are connecting
a mode and an antimode. The first branch of periodic solutions
admits a closed branch of period two solutions (not shown). A
torus bifurcation point immediately follows the second period
doubling bifurcation point (T = 7 =103, P = 1073, a = 4,
and wor = —1).
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FIG. 2. First branch of periodic solutions. Both the maxima
and the minima of the oscillations are shown. The numerical
branch (full line) is compared to the approximation in [15]
(dashed line). It is given by (7) where A; and A, are the single
mode ECM frequencies evaluated at the equal intensity point
(shown in the figure by an arrow). Values of the parameters are
the same as in Fig. 1.

note from Fig. 1 the existence of secondary torus bifurca-
tion points (squares in Fig. 1). These bifurcations are im-
portant for the high intensity branches because they mark
their change of stability and their transition to more com-
plex regimes.

It is worthwhile to investigate the behavior of the tori
as they emerge from their bifurcation points. To this end,
we use a standard integration technique and solve numeri-
cally Egs. (3) and (4). We concentrate on the high in-
tensity branches. As the feedback rate surpasses the torus
bifurcation point, the oscillations are quasiperiodic and the
envelope of the tori remains localized in the vicinity of the
original ECM point (see Fig. 3a). The oscillations are typi-
cally quasiperiodic, i.e., a low frequency modulation of
rapid oscillations (see Fig. 3c). The period of the rapid
oscillations is Pe = 1.16 which is close to the analytical
estimate Pe = 27 /|A, — A| = 1.14 (here, A; = —17.5
and A, = —12 are the frequencies of the two interacting
ECMs). Our bifurcation scenario substantiates earlier in-
vestigations on high frequency regimes possibly linked to
a mode-antimode interaction [23]. The period of the slow
envelope is about Pe = 6.25 and manifests the effect of
the laser relaxation oscillations corrected by the feedback
[22]. Above a critical feedback rate, we note a sudden
jump to a quite different regime. Specifically, the torus
envelope unfolds into a trajectory that is now orbiting near
two or more ECM points (see Fig. 3b). The time evolu-
tion shown in Fig. 3d indicates that several unstable single
mode or unstable periodic orbits are visited. The common
feature between these modes and orbits is that they admit
a similar value of N (see Fig. 3b). A detailed numerical
analysis of the solutions near the transition point between
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FIG. 3. Tori. At a critical feedback rate, a torus oscillating

near an unstable periodic orbit suddenly unfolds into a more
complex regime. This new regime dominates at higher values
of n but coexists with the previous torus for a very small do-
main of 1. The solutions are represented in the phase plane N vs
D(s — 1) — ®(s). We also show ®(s — 1) — D(s) as a func-
tion of time s. Here ® = ¢ + w(7s, where ¢ is defined as the
phase of the complex electrical field E. All the ECM solutions
(A, B) are fixed points in the phase plane and are located on an
ellipse given by A = wo7 + aN *+ /2 — N2. Moreover, the
broken lines in the ®(s — 1) — d(s) vs s diagram correspond
to specific ECM frequencies A. Values of the parameters are
the same as in Fig. 1 and » = 4.4. In (a), the torus has been
obtained by progressively increasing 7 from a lower value. In
(b), the torus has been obtained by progressively decreasing n
from a larger value.

bounded and unbounded tori indicates a slight domain of
hysteresis.

The multifrequency regime appearing as the bounded
torus unfolds in the phase plane anticipates the rich dynam-
ics of LFF observed at larger feedback rates. The bifurca-
tion scenario (periodic isola, torus bifurcation, and torus
unfolding) repeats itself for each high intensity branch of
periodic solutions introducing more periodic orbits and al-
lowing the progressive development of a mature LFF ob-
served at larger values of the feedback rate.

Because bridges of pulsating intensity solutions become
unstable as the feedback parameter increases, high fre-
quencies resulting from the beating of two ECMs are dif-
ficult to observe experimentally under normal LFF con-
ditions (i.e., low pump, low feedback, and large external
cavity conditions). They are more likely to be observed
for short cavity experiments [23], and recent work sug-
gests that regular periodic regimes are possible [24]. From
a theoretical point of view, a laser subject to two optical
feedbacks [25] or exhibiting two polarizations [26] are in-
teresting problems because they admit a larger number of
ECMs meaning better chances to observe stable bridges.
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