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The ground-state ionization potential of the He4 atom is found to be 5 945 204 223 (42) MHz. Along
with lower-order contributions, this result includes all effects of relative order a4, a3me�ma , and a5 ln2a.
Effective operators derived in dimensionally regularized nonrelativistic quantum electrodynamics are
employed. The average values of these operators are evaluated using a high-accuracy variational wave
function constructed in an exponential basis.
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In contrast to the theoretical description of electro-
magnetically bound two-body systems such as hydrogen,
positronium, or muonium, where considerable progress
has been achieved (for the recent reviews, see, e.g., [1]),
high-precision calculations in more complex atoms have
been worked out to a lesser degree. The central problem
with an extension of the methods developed for the
two-body problem to few-electron atoms is that those
methods usually strongly rely on the solution of the
Schrödinger equation for a single particle in the Coulomb
field. Having a simple analytic form, such a solution
is a perfect reference point for the quantum-mechanical
perturbation theory, and various observables can be calcu-
lated as a power series in the fine structure constant a. In
higher orders of this perturbation theory, where ultraviolet
divergences usually appear indicating a breakdown of the
nonrelativistic approximation, the explicit form of the
nonrelativistic solution facilitates the extraction of these
divergences. They can then be canceled by matching with
their finite counterparts calculated in the fully relativistic
framework of the quantum electrodynamics.

Although the Schrödinger equation for, e.g., three par-
ticles bound by the Coulomb forces, can be solved numeri-
cally with very high accuracy [2], the lack of an analytic
solution makes the problem of the divergences cancella-
tion more complicated than in the two-body case. This
problem was recently analyzed in Ref. [3] using singlet
states of the helium atom as an example. Employing the
nonrelativistic quantum electrodynamics (NRQED) [4] in
dimensional regularization, it was demonstrated in [3] how
all divergences arising in the quantum-mechanical per-
turbation theory can be extracted and canceled at the op-
erator level, i.e., without recourse to an explicit form of
the helium wave function. The O �a4� correction to sin-
glet S levels of the He4 atom was represented as a sum
of finite average values of the regularization-independent
operators. Another approach, using an auxiliary parame-
ter to separate hard- and soft-scale contributions, has been
developed in [5].
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In this Letter we report on the most precise evaluation of
the helium ground-state energy. Expressed in terms of the
ionization potential (the difference between ground-state
energies of the singly charged ion and of the atom), our
result reads

nth�11S� � 5 945 204 223 �42� MHz . (1)

Along with the nonrelativistic energy, this result includes
all O �a2�, O �a3�, O �a4�, and O �a5 ln2a� relativistic
and radiative corrections. We take into account the
finite nucleus-to-electron mass ratio M � ma�me �
7 294.299 508 �16� [6] exactly in the nonrelativistic and
O �a2� contributions, include the first ��1�M� recoil
correction into the O �a3� contribution, and neglect the
nuclear recoil in higher orders. The effect of a finite
nuclear charge radius RN � 1.673 �1� fm [7] is included
into the helium ground-state energy as

dchrE �
2pZa

3
R2

N�d��r1� 1 d��r2�� . (2)

Here Z � 2 is the charge of the nucleus (in units of the
proton charge), while �r1 and �r2 denote the positions of the
electrons with respect to the nucleus. The angle brackets
in (2) and below denote the average value over the non-
relativistic ground state. In (1) we take one half of the
O �a5 ln2a� correction as an estimate of the uncertainty
due to higher orders. Our result agrees with the previous
theoretical estimate,

nDM
th �11S� � 5 945 204 226 �91� MHz , (3)

obtained in [8] and including the O �a4� and O �a3�M�
effects only partially. The uncertainty in (3) exceeds that
in (1) because only part of the O �a4� corrections has been
included into the calculation that leads to Eq. (3).

In the remaining part of this Letter, we briefly describe
the details of our calculation. The ground-state energy of
the helium atom is calculated as a power series in the fine
structure constant a. The leading (�1) contribution, the
Schrödinger energy E, and the corresponding wave func-
tion c are found as a solution of the variational problem,
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E � minc

�cjHjc�
�c jc�

, (4)

for the helium atom Hamiltonian taken in the nonrelativis-
tic approximation,

H �
p2

1 1 p2
2

2
1

P2

2M
2

Z
r1

2
Z
r2

1
1
r

. (5)

Here r1,2 � j�r1,2j and r � j�r1 2 �r2j; �p1,2 are momenta
of the electrons and �P � 2 �p1 2 �p2 is the momentum
of the nucleus. Unless otherwise specified, we use the
atomic units e � h̄ � me � 1 and c � 1�a throughout
this paper. In particular, the unit of energy is mec2a2.

To construct the variational wave function, we use the
simplest form of the basis,

cn � exp�2kn
1 r1 2 kn

2 r2 2 kn
3 r� ,

n � 1, . . . , N . (6)

The complex exponents kn
a are chosen in a quasirandom

manner from a rectangular area on the complex plane, for
example,

Rekn
a � Kmin

a 1

π
n�n 1 1�

2
p

pa

∫
�Kmax

a 2 Kmin
a � , (7)

where bxc denotes a fractional part of x, pa is some
prime number, while �Kmin

a , Kmax
a � is a variational interval.

Imaginary parts of the exponents are generated in a similar
way. We use both real and imaginary parts of cn to form
a set of real basis functions. In particular, the ground-state
wave function c is a linear combination of 2N basis
functions Recn, Imcn, n � 1, . . . , N , symmetric over the
interchange of the electrons positions, r1 $ r2.
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Variational expansion in the basis (6) was shown in [2]
to be very effective. It yields the best available nonrela-
tivistic energies for many atomic and molecular systems
and, in particular, for the ground state of the helium atom.
Simplicity of the basis (6) allows us to evaluate analyti-
cally matrix elements of all the operators that appear in
the calculation. By a proper differentiation and/or integra-
tion of the basic integral,Z

d3r1

Z
d3r2

exp�2k1r1 2 k2r2 2 k3r�
r1r2r

�
16p2

�k1 1 k2� �k2 1 k3� �k3 1 k1�
, (8)

with respect to k1, k2, and k3, we express the matrix ele-
ment of any operator involved in the calculation in terms of
rational functions of k, their logarithms, and dilogarithms.

For the zeroth order approximation, a wave function
built within a set of 2N � 1200 basis functions has been
used. It yields the nonrelativistic energy,

E � 22.903 304 557 727 940 23 �1� . (9)

Here and below, we cite the uncertainty of the numerical
results due to finiteness of the basis set. The uncertainties
due to incomplete knowledge of the physical constants are
included into the final result for the ionization potential
(see Table I). The high accuracy of (9) is not redundant
since the calculation of rather singular matrix elements
of higher order corrections requires a very accurate wave
function.

The first relativistic correction to the nonrelativistic
energy (9) is the average value of the Breit Hamiltonian
(see, e.g., [9]) over c:
d�2�E � a2

ø
2

p4
1 1 p4

2

8
2

P4

8M3 1 pZ
d��r1� 1 d��r2�

2
1 pd��r� 2

1
2

∑
�p1

1
r

? �p2 1 � �p1 ? �n�
1
r

� �n ? �p2�
∏

1
Z

2M

∑
�p1

1
r1

? �P 1 � �p1 ? �n1�
1
r1

� �n1 ? �P� 1 �1 ! 2�
∏¿

� 21.952 050 77 �1�a2. (10)

Here �n � �r�r and �n1,2 � �r1,2�r1,2. To simplify the presentation, we explicitly take into account that the spin of the
nucleus and the total spin of electrons are both equal to zero. In particular, we replace the product of the electron spin
operators �s1 �s2 by its eigenvalue in the singlet state, 23�4.

Order a3 and a3�M corrections to the energy can be represented as follows (see [3] and references therein):

d�3�E � a3
∑

4Z
3

µ
2 lna2 2 b 1

19
30

∂
�d��r1� 1 d��r2�� 1

µ
14
3

lna 1
164
15

∂
�d��r�� 1

7
3p

ø
lnr 1 g

r2
i �n ? �p

¿

1
2Z2

3M

µ
2 lna 2 4b 1

31
3

∂
�d��r1� 1 d��r2�� 1

7Z2

3pM

ø
lnr1 1 g

r2
1

i �n1 ? �p1 1 �1 ! 2�
¿∏

� 57.270 34 �2�a3. (11)

Here g � 0.5772 . . . is the Euler constant and b is the helium Bethe logarithm [10] defined as

b �
�� �p1 1 �p2� �H 2 E� ln�2�H 2 E�	 � �p1 1 �p2��

�� �p1 1 �p2� �H 2 E� � �p1 1 �p2��
� 4.370 039 �2� . (12)

The cited value of b was calculated for the finite mass of the nucleus. Details of the calculation in the limit of no recoil
(M ! `) can be found in [11]. For convenience of comparison with earlier results, it is worth writing explicitly the
relation to the Q term introduced by Araki and Sucher [12]:
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Q � limr!0

ø
Q�r 2 r�

4pr3 1 �lnr 1 g�d��r�
¿

� 2
1

2p

ø
lnr 1 g

r2 i �n ? �p

¿
. (13)

In Eqs. (11), (13), and below, all momentum operators standing to the right (left) of position-dependent operators are
assumed to act on the right (left) wave function.

The next, O �a4� correction to the energy [3] is

d�4�E � a4

Ω
2

E3

2
1

E2�c�
4

1
E
4

ø
2CNC 1 c2 2

p2
1p2

2

2
2 pZ�d��r1� 1 d��r2�	

¿

1 �VPGVP � 1 �VSGVS� 1 pkeN�d��r1� 1 d��r2�� 1 pkee�d��r��

1

ø
2

3C1C2CN

4
2

cCNC
2

2
CNc� �p1 ? �p2 1 �n� �n ? �p1� �p2	

4
1

p2
1CNp2

2

4
1

�p1 ? c2 �p1 1 �p2 ? c2 �p2

8

1
� �p1 3 �p2�c� �p1 3 �p2�

4
2

p2
1c� �n ? �p2�2 1 � �p1 ? �n�2cp2

2 2 3� �p1 ? �n�2c� �n ? �p2�2

8

2
2� �n ? �p2� � �E1 ? �p2� 1 � �n ? �E1� �� �n ? �p2�2 2 p2

2 	
4

1 r
3 �E1 ? �E2 2 � �n ? �E1� � �n ? �E2� 2 2� �E1 2 �E2� ? �e

8

2
3
32

P2 2 3� �n ? �P�2

r3 1
pd��r �

2

µ
9P2

16
1 CN

∂
1

pZ

4

∑
d��r1�

µ
3p2

2

2
2

2Z 2 1
r2

∂
1 �1 $ 2�

∏

2
� �E1 2 �E2� ? �e

32
1

Z2

2

∑
1

r3
1

�i �n1 ? �p1 1 Z� 1 �1 $ 2�
∏

2
lnr 1 g

2r2
i �n ? �p

1
3

2r3

µ
i �n ? �p 2

1
2

∂¿æ
1

a2d�2�E�c�
2

� 139.60 �1�a4. (14)
Here we use the following notations: C � CN 1 c,
CN � C1 1 C2, c � 1�r, C1,2 � 2Z�r1,2, �e � �n�r2,
and �E1,2 � 2Z �n1,2�r2

1,2. The terms �VPGVP� and
�VSGVS� in (14), where G is the reduced Green function
of the Schrödinger equation �H 2 E�G��r1, �r2 j �r 01, �r 02� �
c��r1, �r2�c��r 01, �r 02� 2 d��r1 2 �r 01�d��r2 2 �r 02�, represent the
effects of virtual transitions into triplet P and singlet S
excited states, respectively (see [3] for details). Perturba-
tions inducing those transitions are

VP �
�s1 2 �s2

4

µ
Z�l1

r3
1

2
Z�l2

r3
2

1
�r 3 �P

r3

∂
, (15)

where �l1,2 � �r1,2 3 �p1,2, and

VS � E
CN 1 2c

2
1


p2
1 1 c, p2

2 1 c�
8

2
CNc

2
2

3c2

4

1
�p1�CN 2 c� �p1 1 �1 ! 2�

4

2
�p1c �p2 1 � �p1 ? �n�c� �n ? �p2�

2
. (16)

TABLE I. Contributions to the total ionization potential of the
helium ground state. Uncertainty in the nonrelativistic value is
due to uncertainty in the nuclear mass.

dnth�11S�, MHz

Nonrelativistic approximation 5 945 262 288.62 �4�
a2 216 800.338 �4�
a3 240 483.984 �50�
a4 2834.9 �2�
a5 ln2a (and higher) 84 �42�
Finite charge radius 229.55 �4�
Total 5 945 204 223 �42�
193003-3
The contact terms enter into Eq. (14) with the coefficients

keN �
Z3

2
1

427Z2

96
2

10Z
27

2
9Zz �3�

4p2
2

2179Z
648p2

1
3Z 2 4Z2

2
ln2 � 16.3557 , (17)

kee � 2 lna 1
3285
216

2
335

54p2 2
29 ln2

2
1

15z �3�
4p2

� 10.376 57 . (18)

Average values for a part of the operators entering into
Eq. (14) can be found in the literature (see, e.g., [13]). For
the average values of the new operators, we have obtained
the following results:

�VPGVP � � 20.392, �VSGVS� � 218.48 ,
ø
2

CNc� �p1 ? �p2 1 �n� �n ? �p1� �p2	
4

¿
� 0.811 ,

ø
p2

1CNp2
2

4

¿
� 236.983 ,

ø
�p1 ? c2 �p1 1 �p2 ? c2 �p2

8

¿
� 1.142 ,

ø
� �p1 3 �p2�c� �p1 3 �p2�

4

¿
� 1.078 ,

ø
p2

1c� �n ? �p2�2 1 � �p1 ? �n�2cp2
2 2 3� �p1 ? �n�2c� �n ? �p2�2

8

¿

� 0.03 ,
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ø
2� �n ? �p2� � �E1 ? �p2� 1 � �n ? �E1� �� �n ? �p2�2 2 p2

2 	
4

¿
� 4.749 ,

ø
r

3 �E1 ? �E2 2 � �n ? �E1� � �n ? �E2� 2 2� �E1 2 �E2� ? �e

8

¿
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ø
2

3
32

P2 2 3� �n ? �P�2

r3

¿
� 20.353,

ø
9pd��r�P2

32

¿
� 1.325,

ø
pd��r�CN

2

¿
� 22.508 ,

ø
3pd��r1�p2

2

2
1 �1 $ 2�

¿
� 18.421,

ø
3pd��r1�C2

2
1 �1 $ 2�

¿
� 225.066,

ø
2

� �E1 2 �E2� ? �e
32

¿
� 0.409 ,

ø
3

2r3

µ
i �n ? �p 2

1
2

∂¿
� 20.958,

ø
1

r3
1

�i �n1 ? �p1 1 Z� 1 �1 ! 2�
¿

� 4.706 .
Finally, the part of the O �a5� correction enhanced by
ln2a (and, hence, presumably the leading one) [14] is

d�5�E � 24Z3a5 ln2�Za� �d��r1� 1 d��r2�� � 2070a5.
(19)

Numerical results for all the contributions to the helium
ionization potential are collected in Table I. Appropriate
expression for the ground-state energy of the helium ion is

EHe1 � 2
mZ2

2
1

2m3Z4r2
N

3

2 mZ4a2
∑

5
8

µ
1 1

m3

M3

∂
2

m2

2
1

m2

M

∏

2
4m3Z4a3

3p

∑
lnm�Za�2 1 bH 2

19
30

∏

2
2Z5a3

3pM

∑
ln�Za� 1 4bH 2 7 ln2 2

31
3

∏

1 Z3a4
µ
keN 2

9Z3

16

∂
2

4Z6a5

p
ln2�Za� . (20)

Here bH � 2.984 128 555 765 5 . . . is the Bethe logarithm
for the hydrogen ground state, rN � 3.162�2� 3 1025 is
the nuclear charge radius RN expressed in the atomic units,
and m � M��M 1 1� is the reduced mass of the ion in
units of the electron mass.

Comparison of our result (1) with the most recent ex-
perimental values,

n1S 2P
expt �11S� � 5 945 204 238 �45� MHz , (21)

and

n1S 2S
expt �11S� � 5 945 204 356 �48� MHz , (22)

extracted from the measurements of 11S 21P [15] and
11S 21S [16] intervals, respectively, shows that the theo-
retical value (1) agrees well with the former (21) and is
within 2s from the latter (22) if the theoretical and experi-
mental uncertainties are added linearly. Further theoretical
and experimental efforts are desirable in order to further
clarify the situation.
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