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The early stages of a relativistic heavy-ion collision are examined in the framework of an effective
classical SU(3) Yang-Mills theory in the transverse plane. We compute the initial energy and number
distributions, per unit rapidity, at midrapidity, of gluons produced in high-energy heavy-ion collisions.
We discuss the phenomenological implications of our results in light of the recent Relativistic Heavy-Ion
Collider data.
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The Relativistic Heavy-Ion Collider (RHIC) is currently
colliding beams of gold nuclei at the highest center of mass
energies, per nucleon,

p
sNN � 200 GeV. The goal of

these experiments is to explore strongly interacting matter,
in particular the quark gluon plasma (QGP) predicted by
lattice QCD [1].

The possible formation and dynamics of the QGP de-
pend crucially on the initial conditions, namely, the distri-
bution of partons in each of the nuclei before the collision.
At high energies and for large nuclei, parton distributions
saturate and form a color glass condensate (CGC). (For
other perturbative QCD based approaches, see Ref. [2] and
references therein.)

The physics of saturated gluons in the CGC is as follows.
As the energies of the colliding nuclei grow (equivalently
xBj ø 1), partons in the nuclear wave functions multiply
until they begin to overlap in phase space. Repulsive in-
teractions among the partons ensure that the occupation
number saturates at a value proportional to 1�as. This
phenomenon [3], is characterized by a bulk scale (the satu-
ration scale) Ls, where L2

s is proportional to the gluon
density per unit area in a nucleon or nucleus. A simple
saturation model for nucleons with L2

s � L
2
s0�x0�xBj�d

with Ls0 � 1 GeV, x0 � 3 3 1024, and d � 0.29 de-
scribes well deeply inelastic scattering data at the Hadron
Electron Ring Accelerator for xBj , 0.01 and all values
Q2 of the transverse momentum squared from Q2 � 0
up to Q2 � 450 GeV2 [4]. For nuclei, one expects that
L2

s � L
2
QCDA1�3�xd .

In a heavy-ion collision, the CGC “shatters,” producing
“on shell” gluons. In this Letter, we obtain nonperturbative
expressions relating the energy and number distributions of
produced gluons to the saturation scale Ls of the CGC.
Therefore, in principle, the saturation scale Ls may be
determined from heavy-ion experiments.

The CGC can be quantified in a classical effective field
theory, where L2

s is the only dimensionful scale [5]. When
L2

s ¿ L
2
QCD (for high energies and large nuclei), the

coupling is weak: as � as�L2
s� ø 1. However, the occu-

pation number is large, ~1�as ¿ 1. Thus weak coupling,
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classical methods are applicable and can be used to
compute the classical parton distributions of nuclei [5,6].
Recently, renormalization group methods were developed
which systematically incorporate quantum corrections to
the effective field theory (EFT) [6,7].

The classical EFT can be applied to nuclear collisions
[8–10]. The spectrum of gluons produced when the CGC
shatters is described by the solution of the classical Yang-
Mills equations in the presence of two light cone sources,
one for each nucleus, with initial conditions for the gauge
fields given by the gauge fields of the two nuclei before
the collision. Analytical expressions for classical gluon
production were obtained to lowest order in the parton
density [8–10]. However, these are infrared divergent and
need to be summed to all orders in the parton density. This
was first done numerically by two of us for an SU(2) gauge
theory [11], and nonperturbative expressions relating the
energy [12] and number [13] distributions of produced
gluons to the saturation scale were obtained. Here we
extend the work of Refs. [12,13] to an SU(3) gauge theory
[14]. Our results can thereby be compared to available and
forthcoming data from RHIC.

Simulating the SU(3) theory is technically more difficult
than the SU(2) theory. For a comparable set of parame-
ters, the SU(3) case is about an order of magnitude more
challenging numerically than the SU(2) one. The lattice
formulation of the theory is described in detail in [11].
The numerical techniques we use are well known in lattice
gauge theory, with one notable exception. Specifically, a
new procedure had to be devised in order to determine the
initial condition for the transverse components of the gauge
fields. In the SU(2) case, a closed form analytical expres-
sion for the transverse components of the gauge field can
be obtained, while for the SU(3) case it has to be obtained
numerically. The technical details of how this is achieved
is outside the scope of this Letter and will be described in
detail elsewhere.

In this paper we will determine two observables: the
energy and the number distribution of produced gluons. In
doing so, we closely follow the procedure developed for
© 2001 The American Physical Society 192302-1
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the SU(2) case. In the continuum limit the theory contains
two-dimensional parameters: Ls and the nuclear radius R.
Any observable can therefore be expressed as a power of
Ls, times a function of the dimensionless product LsR and
of the coupling constant g [16].

For the transverse energy of gluons we obtain

1
pR2

dET

dh

Ç
h�0

�
1
g2 fE�LsR�L3

s , (1)

The function fE is determined nonperturbatively as fol-
lows. In Fig. 1(a), we plot the Hamiltonian density, for a
particular fixed value [17] of LsR � 83.7 (on a 512 3

512 lattice) in dimensionless units as a function of the
proper time in dimensionless units. We note that in the
SU(3) case, as in SU(2), ´t converges very rapidly to
a constant value. The form of ´t is well parametrized
by the functional form ´t � a 1 b exp�2gt�. Here
dET �dh�pR2 � a has the proper interpretation of be-
ing the energy density of produced gluons, while tD �
1�g�Ls is the “formation time” of the produced glue.

In Fig. 1(b), the convergence of a to the continuum limit
is shown as a function of the lattice spacing in dimension-
less units for two values of LsR. In Ref. [12], this conver-
gence to the continuum limit was studied extensively for
very large lattices (up to 1024 3 1024 sites) and shown
to be linear. The trend is the same for the SU(3) results.
Thus, despite being farther from the continuum limit for
SU(3) (due to the significant increase in computer time),
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FIG. 1. (a) ´t�L3
s as a function of tLs for LsR � 83.7.

(b) ´t�L3
s as a function of Lsa for LsR � 83.7 (squares) and

25 (circles), where a is the lattice spacing. Lines are fits of the
form a 2 bx.
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a linear extrapolation is justified. We can therefore ex-
tract the continuum value for a. We find fE�25� � 0.537
and fE�83.7� � 0.497. The RHIC value likely lies in
this range of LsR. The formation time tD � 1�g�Ls

is essentially the same for SU(2)— for LsR � 83.7, g �
0.362 6 0.023. As discussed in Ref. [12], it is �0.3 fm
for RHIC and �0.13 fm for CERN Large Hadron Collider
(LHC) (taking Ls � 2 and 4 GeV, respectively).

We now combine our expression in Eq. (1) with our
nonperturbative expression for the formation time to obtain
a nonperturbative formula for the initial energy density,

´ �
0.17
g2 L4

s , (2)

This formula gives a rough estimate [18] of the initial
energy density, at a formation time of tD � 1�ḡ�LsR,
where we have taken the average value of the slowly vary-
ing function g to be ḡ � 0.34.

To determine the gluon number per unit rapidity, we
first compute the gluon transverse momentum distribu-
tions. The procedure followed is identical to that de-
scribed in Ref. [13]—we compute the number distribution
in Coulomb gauge [19], =� ? A� � 0. In Fig. 2(a), we
plot the normalized gluon transverse momentum distribu-
tions versus kT�Ls with the value LsR � 83.7, together
with the SU(2) result. Clearly, we see that the normal-
ized result for SU(3) is suppressed relative to the SU(2)
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FIG. 2. Transverse momentum distribution of gluons, normal-
ized to the color degrees of freedom, n�kT � � f̃n��N2

c 2 1� [see
Eq. (3)] as a function of LSR for SU(3) (squares) and SU(2) (tri-
angles). (a) For soft momenta; (b) for all momenta. The solid
lines correspond to the fit in Eq. (4).
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result in the low momentum region. In Fig. 2(b), we plot
the same quantity over a wider range in kT �Ls for two
values of LsR. At large transverse momentum, we see
that the distributions scale exactly as N2

c 2 1, the number
of color degrees of freedom. This is as expected since at
large transverse momentum, the modes are nearly those of
noninteracting harmonic oscillators. At smaller momenta,
the suppression is due to nonlinearities, whose effects, we
have confirmed, are greater for larger values of the effec-
tive coupling LsR.

The SU(3) gluon momentum distribution can be fitted
by the following function:

1
pR2

dN
dhd2kT

�
1
g2 f̃n�kT�Ls� , (3)

where f̃n�kT�Ls� is

f̃n �

8<
: a1�exp�

q
k2

T 1 m2�Teff� 2 1�21 �kT�Ls # 3�
a2L4

s log�4pkT �Ls�k24
T �kT�Ls . 3�

(4)

with a1 � 0.0295, m � 0.067Ls, Teff � 0.93Ls, and
a2 � 0.0343. At low momenta, the functional form is
approximately that of a Bose-Einstein distribution in two
dimensions even though the underlying dynamics is that
of classical fields. The functional form at high momentum
is motivated by the lowest order perturbative calculations
[8–10].

Integrating our results over all momenta, we obtain, for
the gluon number per unit rapidity, the nonperturbative
result,

1
pR2

dN
dh

Ç
h�0

�
1
g2

fN �LsR�L2
s . (5)

We find that fN �83.7� � 0.3. The results for a wide range
of LsR vary on the order of 10% in the case of SU(2).

The broad features of the CGC picture have recently
been compared to the RHIC data [20,21]. We shall here
discuss the phenomenological implications of our specific
model in light of the recent RHIC data on multiplicity and
energy distributions. The final multiplicity of hadrons [22]
is related to the initial gluon multiplicity by the relation
dNh�dh � kineldN

g
i �dh. Here kinel is a factor account-

ing for 2 ! n gluon number changing processes which
may occur at late times beyond when the classical ap-
proach is applicable [23]. Moreover, if partial or full ther-
malization does occur [23,24], the initial transverse energy
is reduced —both due to inelastic collisions prior to ther-
malization and, subsequently, due to hydrodynamic expan-
sion —by a factor kwork. We then have

dEh
T

dh

Ç
h�0

�
p

g2

1
kwork

fE�LsR�Ls�LsR�2,

dNh

dh

Ç
h�0

�
pkinel

g2 fN �LsR� �LsR�2.

(6)
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From the RHIC data at
p

sNN � 130 GeV, we have
dNh�dhjh�0 � 1000 for central collisions [25–28]. For
g � 2�as � 0.33�, pR2 � 148 fm2, and fN � 0.3, we
have kinelL

2
s � 3.5 GeV2. Now, from Eq. (6), the ratio

Rh � dEh
T �dh�dNh�dh is, since fE�fN � 1.66, Rh �

1.66Ls�kwork�kinel. The experimental value [26] for
p

sNN � 130 GeV is Rh � 0.5 GeV. Now, if we as-
sume that there is no work done due to thermalization,
kwork � 1, we obtain from the two conditions Ls �
1.02 GeV and kinel � 3.4 as the values that give agree-
ment with the data. The latter value is the maximal amount
of inelastic gluon production possible. Alternatively, if
we assume that hydrodynamic work is done, one obtains
kwork � �tf�ti�1�3, where tf and ti are the final and
initial times of hydrodynamic expansion, respectively.
This gives us kwork � 2. Following the same analysis as
previously, we obtain Ls � 1.28 GeV and kinel � 2.13.
Thus, within the CGC approach, we are able to place
bounds on both the saturation scale and on the amount of
inelastic gluon production at RHIC energies. An indepen-
dent method to extract Ls directly from the data (albeit
assuming parton-hadron duality) is to compute the rela-
tive event-by-event fluctuations of the gluon number [29].

It is difficult to compare the initial pt distributions we
have computed directly to the data. First, we assumed
uniform nuclear matter distributions and periodic bound-
ary conditions. Using realistic nuclear profiles and open
boundary conditions will likely modify our results. Work
is in progress in this direction and will be reported soon
[29]. Second, even if there is no additional rescattering, we
note that the spectrum of hadrons is obtained by convolv-
ing the spectrum of produced gluons with fragmentation
functions. The spectrum of hadrons will therefore be dif-
ferent from the spectrum of the initially produced gluons.
Further, if rescattering occurs, one expects the gluon spec-
trum itself to be modified from the initial gluon spectrum
[24,30]. The initial gluon spectrum computed in our ap-
proach can, however, be used as the initial condition for
transport (parton cascade [31]) calculations of the subse-
quent evolution of the system.
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