
VOLUME 87, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 5 NOVEMBER 2001
Superfluid-to-Solid Crossover in a Rotating Bose-Einstein Condensate
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The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric
trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater
number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia ap-
proach those of a classical fluid at high frequencies, the observed vortex density is consistently lower
than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular
triangular arrays, with little distortion even near the condensate surface. These results are shown to be
a direct consequence of the inhomogeneous confining potential.
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One of the most striking properties of liquid 4He�II� is
its ability to mimic the behavior of a solid body when sub-
jected to uniform rotation. Since the superfluid velocity
field vs is irrotational �= 3 vs � 0�, the superfluid com-
ponent of 4He�II� might be expected to remain at rest while
the normal component rotates with the container. In fact,
for sufficiently large values of the rotation frequency V,
the entire fluid is found to rotate like a classical liquid
at all temperatures [1]. The paradox may be resolved by
assuming that the superfluid is threaded by quantized vor-
tices. These are singularities of vs, around which the phase
of the superfluid order parameter increases by 2p. Al-
though the mechanisms for the spin-up of the superfluid
are not fully understood, at equilibrium the vortices must
flow with the normal velocity due to the the mutual friction
between superfluid and normal components [2]. In addi-
tion to considerable indirect evidence for this hypothesis,
small numbers of vortices have been imaged directly in ro-
tating superfluid 4He [3].

In this Letter, we show how the presence of quantized
vortices can allow a Bose-Einstein condensate (BEC) to
mimic a classical fluid under rotation, as has been sug-
gested by recent experiments at JILA [4]. In these experi-
ments, a trapped gas of ultracold 87Rb atoms is spun up,
and then cooled through the Bose-Einstein condensation
transition. For small values of V, the condensate den-
sity is found to assume its usual nonrotating shape, while
the thermal cloud bulges outward. This corroborates pre-
vious evidence that the condensate behaves as an irro-
tational superfluid [5,6]. The condensate density profile
undergoes a sudden change at a value of V that is com-
parable to the thermodynamic critical frequency for the
stability of a single vortex [7]. As V increases further,
the shape of the condensate gradually approaches that of
the thermal cloud. This suggests that, for any given value
of V and temperature, the condensate contains the appro-
priate number and distribution of vortices for thermody-
namic equilibrium [8]. In contrast, when no appreciable
thermal fraction is present, higher rotation frequencies are
generally required to nucleate vortices in BECs [9–11].
190401-1 0031-9007�01�87(19)�190401(4)$15.00
We present two key results, which also bear on issues
raised by recent experiments at MIT [10]. First, the vor-
tices are arranged in extremely regular triangular arrays:
Even near the condensate surface, little circular distortion
[12] is found. Second, the number of vortices is consis-
tently lower than that required to ensure solid-body rota-
tion throughout the condensate.

To make explicit comparison with the recent JILA
experiment, we consider the case of N � 200 000 atoms
of 87Rb, confined in a cylindrically symmetric trap
with radial frequency vr�2p � 8 Hz, and anisotropy
l � vz�vr �

5
8 . Unless stated explicitly, our units of

energy, angular frequency, length, and time are given
by h̄vr , vr , dr �

p
h̄�Mvr � 3.845 mm, and v21

r ,
respectively, where M is the atomic mass and h̄ is
Planck’s constant h divided by 2p. We work in a frame
that rotates with angular frequency V about the z axis.
The time-dependent Gross-Pitaevskii (GP) equation [13],
which governs the dynamics of the condensate wave
function c of a dilute BEC at zero temperature, is then
given by

i≠tc�r, t� � �T 1 Vtrap 1 VH 2 VLz�c�r, t� , (1)

with kinetic energy T � 2
1
2 =2, trap potential

Vtrap �
1
2 �r2 1 l2z2�, and angular momentum compo-

nent Lz � i� y≠x 2 x≠y�. The effects of atomic interac-
tions are included in the nonlinear term VH � 4phjcj2,
h � Na�dr , where a � 5.29 nm is the scattering length
for 87Rb collisions [14]. We use the normalization con-
dition

R
drjc�r, t�j2 � 1. At equilibrium in the rotating

frame, c�r, t� � e2imtc�r�, where m is the chemical
potential.

To estimate the properties of a rotating condensate, such
as the aspect ratio and the number of vortices, we consider
two tractable cases: a single vortex applicable for small
V, and multiple vortices relevant to high V where the
condensate is expected to behave essentially as a rigid
body.
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With one vortex at the center of the trap, c � jcjeif,
where f is the polar angle. In the large-N or Thomas-
Fermi (TF) limit, the condensate density is jcj2 � �m 2
r2

2 2
l2z2

2 2
1

2r2 1 V��4ph when that quantity is posi-
tive, and is zero elsewhere [7]. The inner cutoff de-
fines the vortex core size or the healing length j; for
m ¿ 1, one obtains j � 1�

p
2m � 1�R0, where R0 �

�15hl�1�5 is the TF radius along r̂ in the absence of
a vortex. A straightforward calculation shows that, for
large R0, the TF radius for an isolated vortex is Rr �
R0�1 1 �3�2R4

0 � ln�2R0�j�� and the condensate aspect ra-
tio is l

0
TF � Rr�Rz � l�1 1 �1�2R2

0 ��. Assuming this
result depends only weakly on vortex position, and is ad-
ditive with respect to the number of vortices Ny, then in
explicit units l

0
TF � l�1 1

1
2Ny�dr�R0�2� at larger V.

For large Ny, as we will show below, the conden-
sate rotates almost as a solid body, so the rotating-
frame velocity operator vr � 2i= 2 Vẑ 3 r can
be neglected. Since T 2 VLz �

1
2v2

r 2
1
2 V2r2,

rotation effectively softens the radial potential,
Vtrap !

1
2 �1 2 V2�r2 1

1
2l2z2. In this case, Rr �

R0��1 2 V2�3�10 and l
0
sb � l�

p
1 2 V2. The number

of vortices is the line integral of the phase gradient around
the cloud perimeter; assuming the solid-body value of the
tangential velocity VRr, then the areal vortex density is
ny � Ny�pR2

r � V�p, and Nsb
y � VR2

0��1 2 V2�3�5.
If the vortices form a regular array at large V, then

the lattice constant b should be comparable to the aver-
age separation between vortices n21�2

y �
p

p�V. For a
triangular array centered at the origin [15,16], the vortices
arrange themselves in concentric hexagonal rings labeled
by ring index r, such that Ny � 1 1 3r�r 1 1�. Assum-
ing the superfluid velocity exactly matches the solid-body
value midway between nearest-neighbor vortices (where
the two nearest rotational fields exactly cancel), then Ny �
Vb2�r 1

1
2 �2 and b �

p
3�V for large r. Since Vmax �

1 in a harmonic trap, the smallest vortex separation is
bmin �

p
3 dr in explicit units. When the vortex cores

begin to overlap significantly �b � j�, the system might
undergo a phase transition, possibly into a state akin to a
quantum Hall insulator [16,17]; since j�r � 0, z � 0� �
1�
p

2m � 1�R0�1 2 V2�1�5 in the TF limit, the value of
V for this to occur must become extremely close to unity:
1 2 V � R25

0 .
The stationary solutions of the GP equation in the

rotating frame, defined as local minima of the free
energy 	E
 � mN 2

1
2 	VH
, are found numerically by

norm-preserving imaginary time propagation using an
adaptive stepsize Runge-Kutta integrator. The wave
function is solved on a three-dimensional Cartesian
mesh within a discrete-variable representation [18]
based on Gauss-Hermite quadrature, and is assumed
to be even under reflection in the z � 0 plane. The
initial state is taken to be the TF wave function with a
phase F�x, y� �

P
x0,y0

tan21�� y 2 y0���x 2 x0��, where
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�x0, y0� are vortex positions in a regular array centered
at the origin. The GP equation for a given value of V

is propagated in imaginary time until the fluctuations in
both m and the norm become smaller than 10211. The
condensate densities integrated down x̂ and ẑ are then fit
to a TF profile using a nonlinear least-squares analysis,
where densities lower than 0.1% of the maximum value
are discarded. For the vortex-free condensate, this yields
an aspect ratio of 0.645, which is 3% larger than the TF
value of 5

8 .
The resulting equilibrium configurations are sensitive

to the initial vortex distributions. Figure 1 shows three
different solutions of the GP equation (1) for V � 0.45.
These were obtained using seed arrays with rhombohedral
(left), square (center), and triangular (right) symmetries,
respectively. Though observables such as the energy,
angular momentum, and cloud aspect ratio are all com-
parable, they each have different vortex numbers and
arrangements. Though a complete survey of possible
configurations is beyond the scope of the present work,
for all cases considered the initial rhombohedral vortex
distribution is found to yield the final state with lowest en-
ergy; for larger V, this symmetry gives rise to equilibrium
arrays that are generally triangular (see below).

The central results of the present work are shown
in Fig. 2, which depicts equilibrium solutions for
0.25 # V # 0.95. A single vortex at the origin has
appeared by V � 0.35; the thermodynamic critical
frequency (the energy difference between states with
zero and one vortex, divided by h̄) is Vc � 0.30. This
value is slightly lower than the experimental value
0.32 , Vc , 0.38; since Vc � N22�5, perhaps there
are fewer atoms in the condensate at vortex nuclea-
tion. (The dynamic critical frequency, at which the
first collective mode becomes negative, is somewhat
higher: Vn � 0.46.) With a vortex, the cloud aspect
ratio changes to l � 0.663; using the fitted values for
the nonrotating cloud l � 0.645 and R0 � 4.86, the TF
prediction is l

0
TF � 0.659. As V continues to increase,

so does the aspect ratio; the cloud becomes spherical for
0.75 , V , 0.8 (consistent with the experimental re-
sults) and highly oblate for V � 0.95, at which l0 � 1.8.

FIG. 1. Three stationary states are shown for V � 0.45. From
left to right, the values �E�N , m, 	Lz 
�N� in scaled units are
�7.20, 11.28, 2.31�, �7.21, 11.29, 2.33�, and �7.24, 11.28, 2.19�,
respectively.
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FIG. 2. Condensate densities integrated along ŷ (upper row)
and ẑ (lower row) are shown for V � 0.25, 0.35, 0.55, and 0.65
(first data set, left to right) and Ṽ � 0.75, 0.80, 0.90, and 0.95
(second data set, left to right). Each frame is 20dr � 77 mm
on a side.

As shown in Fig. 3, the solid-body estimate of the cloud
anisotropy l

0
sb tracks (but consistently exceeds) our nu-

merical values; in contrast, l
0
TF is always too small. For

example, when V � 0.95, one obtains l
0
sb � 2.00 and

l
0
TF � 1.50 with Ny � 65 (see Fig. 4). The number of

0.0 0.2 0.4 0.6 0.8 1.0
Ω (units of ωρ)

0.0

1.0

2.0

3.0

4.0

5.0

λ=
R

ρ 
/R

z

0.2 0.4 0.6 0.8 1.0
Ω (units of ωρ)

0.0

10.0

20.0

30.0

I

FIG. 3. The cloud aspect ratio l � Rr�Rz and moment of
inertia I (inset) are shown as a function of rotation frequency
V. The numerical results (solid lines) for l are obtained by a
TF fit to the cloud profile, and I � 	Lz 
�NV. The solid-body
(dashed lines) result for the cloud anisotropy corresponds to
l�

p
1 2 V2, while the corresponding moment of inertia is given

by I � 	x2 1 y2
.
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enclosed vortices is not known a priori, however; using
the solid-body estimate Nsb

y � 89 for V � 0.95 yields the
much improved l

0
TF � 1.83. Another indication that the

condensate is behaving classically at large V is the mo-
ment of inertia I (inset of Fig. 3). The effective value I �
	Lz
�V is always lower than the solid-body I � 	x2 1

y2
, but is within 4% by V � 0.95.
The number of vortices at equilibrium is always

considerably lower than the solid-body prediction, as in
previous experimental observations [10]. Since the
numerical solutions are stationary in the rotating frame,
this discrepancy cannot be explained by positing that
the vortex array rotates more slowly than the trap. Con-
sider the cases V � 0.55, 0.8, 0.9, and 0.95 shown in
Fig. 2, which approximate centered triangular arrays
with Ny � 1 1 3r�r 1 1�, r � 1 4, respectively. The
average vortex spacing is found to follow the prediction
b �

p
3�V to within 3%. An additional hexagonal ring

of vortices could therefore fit comfortably within the
cloud. For V � 0.95, 5b � 8.89 is smaller than the
radius Rr � 9.41, and r � 5 corresponds to Ny � 91
which is close to the solid-body prediction N sb

y � 89. For
Ny � 169 �r � 7�, which is comparable to the largest
array in experiments at MIT [10], the missing nr � 8 ring
implies that the equilibrium number of vortices is of order
20% lower than the solid-body prediction.

The absence of the last ring might be due to the fact
that vortices in this low-density region would significantly
overlap because of their large core size. Assuming that the
vortex diameter is twice the local healing length, then with
j�r, z � 0� � 1�Rr

q
�1 2 V2� �1 2 r2�R2

r� one ob-
tains a critical vortex displacement rc � 9 for V � 0.95.
In fact, the energy of a uniform array of vortices in
a rotating cylinder is also minimized if there exists a
“vortex-free strip” the size of approximately one ring near
the edge of the vessel [19], i.e., Ny � 2pR2V�k 2 d,
where d � N21

y . This correction is due to the contribution
to the energy of strictly irrotational flow in the region
between the last vortex and the superfluid surface.

The existence of a vortex-free region in trapped conden-
sates is confirmed by evaluating the change in condensate
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FIG. 4. The number of vortices within a circular contour cen-
tered at the origin are shown as a function of contour radius R
(solid lines) for V � 0.75 and 0.95. The solid-body predictions
VR2 (dashed lines) are shown for comparison. The vertical dot-
ted lines denote the TF fit for the radial radius.
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FIG. 5. The velocity field v in the xy plane is represented
by arrows for the V � 0.95 case. The left and right images
correspond to the laboratory and rotating frames, respectively.

phase around a contour in the xy plane of increasing radius
R from the origin. This is accomplished by calculating
the spatial derivatives of the numerical data in order to
determine v � =F, interpolating the results onto a one-
dimensional azimuthal grid with 2000 points, and
evaluating the line integral

H
v ? dl numerically using

a trapezoidal rule. The results for V � 0.75 and 0.95
are given in Fig. 4. On average, the number of vortices
follows the solid-body expression VR2 for small rings,
but begins to lag noticeably as R ! Rr even before the
vortex-free strip is reached. The velocity field for the
V � 0.95 case, shown in Fig. 5, is small in the rotating
frame everywhere except for the rotational currents near
the vortex cores and the irrotational flow near the surface.

In order to further explore this issue, consider a model
wave function with constant amplitude and phase given
by F�x, y� �

P
x0,y0

tan21�� y 2 y0���x 2 x0��, where
�x0, y0� are vortex positions in a centered triangular
array with lattice constant b. For Ny � 61 �r � 4�,
the vortex velocities y � j=Fj on successive hexago-
nal rings nr are y �

1
b �3.63, 7.23, 10.69, 13.57�. Since

y�nr � 4� , 4y�nr � 1� by 7%, the angular velocity of
the last ring cannot attain the solid-body value for any
choice of b. For large arrays, this mismatch in velocities
varies as �R�Rr�5, and is why significant distortion of
the vortex array from triangular is expected near the
superfluid surface [12].

The following question immediately arises: Why are
the vortex arrays observed in confined condensates so per-
fectly triangular, even very near the surface? One pos-
sible explanation is that a displaced vortex will precess
around the origin even in the absence of other vortices, due
to the inhomogeneous external potential. Neglecting vor-
tex curvature (which from Fig. 2 is evidently negligible at
large V), the additional contribution to the velocity is y �
�R��R2

r 2 R2�� ln�j�Rr � in the TF limit [7]. Let us re-
turn to the case considered above, with r � 4, and choose
V � 0.95 for concreteness. Assuming Rr � R0��1 2
190401-4
V2�3�10 and imposing 3.63�b 1 y�R � b� � Vb, one
obtains b � 1.98 and y � �1.88, 3.76, 5.62, 7.37�. Thus,
including the effect of precession, the solid-body value
y � 4 3 1.88 at R � b now exceeds the velocity of the
last ring R � 4b by only 2%.

In conclusion, we have explored the crossover of a con-
fined Bose-Einstein condensate from that of an irrotational
superfluid to a solid body with increasing rotation. The ex-
ternal potential is shown to strongly influence the density
and arrangement of the resulting vortices. Many related is-
sues remain unresolved, however, among them the spin-up
of the superfluid by the thermal cloud, the upper critical
frequency, and the approach to a quantum Hall state; these
will be the subject of future work.
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