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In this Letter, we report the observation of a transition from self-replicating behavior to stationary
spatial structures induced by concentration-dependent diffusivities in the excitable Gray-Scott medium.
Notably, the transition occurs even though there is no change in the relative diffusivities between the
activator and the inhibitor. In contrast to the well-known Turing patterns, the obtained time-independent
spatial structure has no intrinsic wavelength and the asymptotic state depends exclusively on the initial
perturbations. This study illustrates that variable diffusivities can also have profound effects on pattern
formation and selection in excitable media.
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Pattern formation in inhomogeneous reaction-diffusion
media has attracted increasing attention in the past decade
[1–13]. In the majority of these studies, the inhomogene-
ity appears in the kinetic terms rather than the transport
coefficients [1–8]. For instance, the ruthenium catalyzed
Belousov-Zhabotinsky (BZ) reaction has been modulated
by projecting an illumination pattern of varying intensity
onto the reaction medium, where light stimulates the pro-
duction of bromide, an inhibitor of the BZ reaction [1,2].
A variety of phenomena that are not found in homogeneous
media are obtained in systems subjected to spatiotemporal
modulation of the kinetics [1–8]. In nature, the inhomo-
geneity may also arise from the gel or porous medium in
which the studies of pattern formation are often performed,
i.e., in the transport processes [14,15].

In this Letter, we investigate the impact of concentra-
tion-dependent diffusion processes on pattern formation.
The local diffusion coefficients are assumed to have func-
tional relationships with the local concentration of a chemi-
cal reactant. The inclusion of concentration-dependent
diffusivities has been found to be essential to the model-
ing of ionic reaction-diffusion systems, among other physi-
cal, chemical, and biological systems [9–13]. In living
cells, the metabolites frequently modulate the function of
transporters. Density-dependent migration and its effect
on spatial segregation in population models has also been
the subject of intensive study [11–13]. The present study
shows that concentration-dependent diffusivities can in-
duce a transition from self-replicating behavior to station-
ary patterns, even though there is no change in the relative
diffusivity between the activator and the inhibitor. These
results thus suggest that transport gradients in excitable
media can also be used to manipulate pattern formation
and selection.

This study is carried out with a two-variable Gray-Scott
model [16,17] in one spatial dimension. In dimensionless
form the equations are
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where u and y are the dimensionless concentrations of
the reactant and the autocatalyst, respectively; a and t

are parameters related to the residence time and autocata-
lyst decay rate. Du and Dy are the diffusion coeffi-
cients of the reactant and the autocatalyst, respectively.
The diffusion coefficients are assumed to depend linearly
on the concentration y: Du�x� � D0

u���1 1 kuy�x���� and
Dy�x� � D0

y���1 1 kyy�x����, where ky and ku are the coef-
ficients regulating the relationships between the diffusivity
and the local concentration y�x� [18]. Earlier studies have
shown that the relative diffusivity Du�Dy is an important
parameter in controlling pattern formation [19–26]. To ex-
clude the influence of changing this ratio, we focus here
on the situation ky � ku such that there is no variation in
the value of Du�Dy when y changes.

The parameter values used throughout this study are
a � 0.07, t � 20. At the above dynamical condition,
the system has one trivial steady state solution u � 1
and y � 0, which is linearly stable and globally attract-
ing. Small perturbations decay exponentially but larger
perturbations result in a long excursion in the phase space
before returning to the steady state. Figure 1a presents a
space-time plot of solutions to the classical model in which
the diffusion coefficients are constant, i.e., ku � ky � 0
so that Du and Dy are independent of the concentration
of y. Gray levels represent the concentration of y, with
white corresponding to maximum and black to minimum.
An initial perturbation on y with spatial size of 20 grid
points is applied to the center of the medium. The ini-
tial perturbation initiates two traveling waves, one travel-
ing to the left and one to the right, which split repeatedly
(replicate) until the medium is filled with pulses [27–31].
Then, the pattern becomes time independent. The final
pattern is largely independent of the initial conditions. For
instance, if we change the width of the initial perturba-
tion, the replication sequence is slightly modified but the
final pattern still displays eight stable pulses because these
© 2001 The American Physical Society 188302-1
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FIG. 1. (a) Space-time plot of a one-dimensional medium with
a local perturbation of size 20 grid points applied to the middle
of the system. The (constant) diffusion coefficients are D0

u �
2 3 1025 and D0

y � 3.3 3 1026. Other parameter values are
given in the text. Gray levels represent the concentration of y,
with white corresponding to maximum and black to minimum.
Regardless of the initial conditions, the pulses replicate until
they fill the medium with a characteristic wavelength (pulse-to-
pulse distance). (b) Space-time plot showing the formation of
time-independent spatial structures induced by concentration-
dependent diffusivities. All parameters are as in panel (a) ex-
cept ku � ky � 0.4. The medium was perturbed by three initial
perturbations with different spatial sizes: 8 grid points (left),
20 grid points (middle), and 70 grid points (right). While there
is a minimum separation between pulses, there is no replica-
tion leading to a pattern of fixed wavelength. In both sets of
simulations, the unit grid length is 0.002 dimensionless units.
The spatial extents of the simulations are, respectively, 300 grid
points in panel (a) and 600 grid points in (b). Nonflux bound-
aries and the first-order Euler method were employed in these
calculations. Qualitatively, the same results were obtained when
smaller unit grid lengths and integration step sizes were used.

patterns, similar to many others studied recently, have
an intrinsic chemical wavelength [19–25]. However, the
stable pulses do not emerge from the amplification of
small inhomogeneities near a linearly unstable homoge-
neous steady state as in a Turing bifurcation. Indeed, the
medium is excitable and the initial perturbations required
to create these patterns are localized, above threshold per-
turbations from the stable state.

Calculation results with the concentration-dependent
diffusivities are presented in Fig. 1b, in which three
initial perturbations on y with different spatial sizes (8,
188302-2
20, and 40 grid points, respectively) were applied to
the medium. Instead of traveling waves that split, the
stable solutions here are time-independent pulses. The
perturbation with the smallest spatial size remains static
at its initial location and there is no replication at all. The
perturbation of moderate spatial size (the middle one in
Fig. 1b) first breaks into two pulses which repel each other
to propagate outward. When the space between the two
pulses is large enough, they become time independent.
Further increase of the spatial size of the perturbation
shows similar behavior in that two pulses are formed
from the ends of the perturbation. However, the pulses do
not propagate in space, given that their initial distance is
large enough. Unlike the pattern shown in Fig. 1a, here
the space between pulses (the “wavelength”) depends
strongly on the initial perturbations, suggesting that the
stable pattern obtained here has no intrinsic wavelength.
This is an essential difference from the Turing and other
recently reported stable patterns [19–25].

The existence of single-pulse and single-spot solutions
in excitable Gray-Scott media has been studied recently
by several groups [32–34]. Doelman and co-workers re-
ported that, by varying the kinetics and chemical trans-
port, the excitable Gray-Scott medium might undergo a
transition from self-replicating behavior to the globally
uniform stable state (u � 1, y � 0). Near the transi-
tion there exists a narrow parameter window for existence
of single-pulse solutions. Results shown in Fig. 1b illus-
trate that variable transportation properties in the excitable
medium can also cause a bifurcation from self-replicating
to stable patterns. More significantly, the transition occurs
even at constant Du�Dy , whereas in classical models of
pattern formation this ratio is critical to the eventual be-
havior of the system.

In Fig. 2 the threshold value of ku (or ky) for inducing
a transition from self-replicating to stable pulses is charac-
terized with respect to the ratio Du�Dy at different values
of the kinetic parameter a. Stable pulses are achieved in
the region above each curve, whereas self-replication be-
havior can be seen for parameter values below each curve.
A saddle-node bifurcation occurs when a � 0.062. The
positive ku implies that the local diffusion coefficients in-
crease with y. As shown in the figure, with the same
Du�Dy ratio the threshold value of ku (and ky) increases
when the dynamics of the system is close to the saddle-
node bifurcation. Also, the increase of the threshold ku

is faster at smaller values of Du�Dy and eventually ap-
proaches a constant value.

To qualitatively analyze the formation of these stable
pulses, Fig. 3 presents the nullclines of the system in the
�u, y� concentration space and the projection of the spa-
tiotemporal profiles of the stable pulses shown in Fig. 1.
As shown in this figure, the two nullclines have no intersec-
tion [35] and the system has only one trivial stable steady
state. In general, the system will evolve to this globally
attracting state after being perturbed away from it. Plots
of the stable pulses in the concentration space appear as
188302-2
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FIG. 2. Phase diagram showing the influence of Du�Dy on
the threshold values of ku � ky for stable pattern formation at
different values of a. Stable pulses exist for parameter values
above the curve, whereas the self-replication phenomena can be
achieved for values below these curves.

curves of bounded extent because of the roughly bell-
shaped appearance of the pulses. The free ends of these
curves represent the centers of the corresponding pulses.
For the case ku � ky � 0.4 corresponding to Fig. 1b, all
five stable pulses are plotted but only one curve can be
distinguished here, indicating that the pulses are identical.
However, the ku � ky � 0 pulses are not identical to each
other. Stable pulses are eventually obtained in both cases
due to a similar balance of kinetics and diffusion: The
center of the pulse lies above the u and y nullclines. In
this region, the chemical kinetics tend to increase y and to
decrease u. However, the diffusion terms have the oppo-
site effect: Since y is high in the middle, diffusion tends
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FIG. 3. Nullclines and projections of the stable pulses in the
�u, y� phase space. The projections are represented by the solid
lines. The dotted line is the nullcline du

dt � 0, the kinetics of u
being negative above the curve and positive below. The dy

dt � 0
nullcline is the dashed line; the kinetic term for y is positive
above the dashed line and negative below. There is no in-
tersection between the two nullclines inside the positive quad-
rant [35].
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to decrease its concentration while the low concentration
of u in the middle of the pulse implies a net inward diffu-
sion. The situation is reversed in the tail. A stable pulse
results when diffusion and kinetics exactly balance each
other in every region of the pulse. In the case with con-
stant diffusion coefficients, a single pulse is not stable: It
replicates due to the very high value of y which is reached
in the middle of the pulse. This causes the concentration
of the reactant u to drop to such an extent that the value
of y in the center of the pulse collapses. It is only the
interaction between several closely packed pulses which
eventually stabilizes them, thus leading to a well-defined
wavelength for the pattern. Conversely, in the case with
concentration-dependent diffusivities, the removal of y by
diffusion is specifically enhanced in the center of the pulse.
(Compare the profiles of the pulses in Fig. 3.) The resul-
tant stabilization of the center of the pulse allows it to reach
a stable profile without interacting with other pulses.

In summary, the above results illustrate that inhomoge-
neous transport can play an important role in pattern for-
mation, even when the relative diffusivity of the activator
and inhibitor is constant. It has been well documented
that the relative diffusivity in activator-inhibitor systems
is crucial in inducing transitions in spatiotemporal dynam-
ics [19–26]. The results presented here complement these
earlier studies by showing that a self-organized gradient in
diffusivity can also be a bifurcation control parameter
in pattern formation and selection. In contrast to the
well-studied Turing patterns, the stable pulses observed
here have no intrinsic wavelength but do have a charac-
teristic spatial extent, and above-threshold perturbations
are required to initiate the pattern formation. Our analy-
sis shows that the emergence of these stable pulses is due
to a fine balance between the kinetics and transport terms.

The transition from self-replication to stable pulses in-
duced by concentration-dependent diffusivities presents a
new approach to achieving stable spatial structures lacking
an intrinsic wavelength. This mechanism may play an im-
portant role in the development and the evolution of stable
patterns in nature. The transport of chemicals through cells
in biological systems, for instance, is known to be affected
by the local concentrations of chemical species. Recently,
Yoshida et al. also reported the volume change of a gel
with respect to the variation of the local concentrations of
chemicals [14]. We considered one, and perhaps the sim-
plest, way in which the local diffusion process can depend
on the concentration of chemical species. Nevertheless, the
results clearly demonstrate the new features which can be
expected to be observed in these pattern forming systems.
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