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For time series exhibiting strong periodicities, standard (linear) surrogate methods are not useful. We
describe a new algorithm that can test against the null hypothesis of a periodic orbit with uncorrelated
noise. We demonstrate the application of this method to artificial data and experimental time series,
including human electrocardiogram recordings during sinus rhythm and ventricular tachycardia.
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The method of surrogate data [1] is widely applied to
test the null hypothesis that an observed time series is a
typical realization of the output of a specific class of dy-
namical systems. This method is widely used in the anal-
ysis of experimental time series and provides a powerful
tool in the search for determinism in apparently stochastic
data. However, the current surrogate techniques have very
limited utility when applied to a time series with a strong
pseudoperiodic behavior.

The surrogate algorithm we describe in this Letter gen-
erates pseudoperiodic surrogates (PPS). This method is
based on the well-known local-linear modeling methods
described by Mees [2] and Sugihara and May [3]. Previ-
ously, Small and Judd advocated [4] and implemented [5]
nonlinear radial basis modeling routines [6,7] as a form of
surrogate hypothesis testing. The method we describe here
is simpler and tests a more specific null hypothesis. This
method may be applied to test against the null hypothesis
of a periodic orbit with uncorrelated noise in the very large
number of experimental systems that exhibit pseudoperi-
odic behavior.

By contrast, the three most successful, and widely ap-
plied, algorithms test for membership of the class of (i) in-
dependent and identical distributed (IID) noise processes,
(ii) linearly filtered noise processes, and (iii) static mono-
tonic nonlinear transformation of linearly filtered noise
processes [1,8]. For time series data exhibiting strong
pseudoperiodic behavior, the null hypotheses of IID or col-
ored noise are obviously false. Therefore, apart from serv-
ing as a “sanity check,” these existing algorithms are of
limited use for such data.

For a pseudoperiodic time series, Theiler and Rapp
suggested an alternative algorithm [9]: cycle shuffled sur-
rogates. Analogously to IID noise surrogates, cycle shuf-
fled surrogates are produced by shuffling the individual
cycles within a time series. Hence, intracycle dynam-
ics are preserved but intercycle dynamics are not. How-
ever, even with this new approach Theiler noted spurious
long term correlations in the autocorrelation plot [9] for
cycle shuffled surrogates. Furthermore, if the peak or
troughs do not occur at precisely the same values, surro-
gates generated by this method are not able to preserve
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both stationarity and continuity. By shifting individual
cycles vertically, individual cycles can be matched and
continuity will be preserved. However, such a transfor-
mation introduces nonstationarity in the surrogates that is
absent in the original.

Each of these techniques is commonly applied to corrob-
orate (or dismiss) observed nonlinearity in an experimental
time series. However, for cyclic (i.e., pseudoperiodic) data
the current methods perform poorly —or are simply not
applicable. The PPS algorithm we describe in this Let-
ter offers an entirely new surrogate generation algorithm
that tests the null hypothesis that an observed time series
is consistent with an (uncorrelated) noise-driven periodic
orbit. Alternative hypotheses include deterministic nonpe-
riodic intercycle dynamics or a periodic orbit with corre-
lated noise.

By using correlation dimensions [10], we test this new
algorithm with data from the Rössler attractor in both
periodic and chaotic regimes. Our results show that this
algorithm is able to distinguish between a noisy periodic
orbit (the Rössler system exhibiting stable period 6 dy-
namics) and the chaotic Rössler contaminated with dy-
namic noise. We then apply our method to data from
a periodic system driven by white and colored noises.
The surrogate test is able to distinguish between these
two cases. This demonstrates that this algorithm is a
test against the null hypothesis of only uncorrelated noise
in the intercycle dynamics. Finally, we apply this al-
gorithm to human electrocardiogram (ECG) data during
sinus rhythm and ventricular tachycardia (VT). When
applied to these data, our algorithm demonstrates that si-
nus rhythm and VT are not consistent with an uncorre-
lated noisy periodic orbit.

Let �xt�N
t�1 be a scalar time series of N observations. For

embedding dimension de and embedding lag t we recon-
struct the underlying dynamics according to the Takens’
embedding theorem [11]:

zt � �xt , xt2t , xt22t, . . . , xt2�de21�t�

for t � �de 2 1�t 1 1, . . . , N . For notational conve-
nience let us reindex the embedded time series to be
�zt�Ñ

t�1, where Ñ � N 2 �de 2 1�t. To construct a
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surrogate we employ the following scheme: (1) Ran-
domly choose an initial condition s1, where s1 [ �zt :
t � 1, . . . , Ñ�. Set i � 1. (2) For si choose a neighbor
sj [ �zt : t � 1, . . . , Ñ � with probability

Prob�sj � zt� ~ exp
2kzt 2 sik

r
. (1)

The parameter r is the noise radius and will be discussed
latter. (3) Set si11 � sj11 and then increment i. (4) Re-
peat this procedure from step (2) until i . N . The vector
time series �st�N

t�1 represents a stochastic trajectory on the
attractor approximated by �zt�Ñ

t�1 with the same underlying
dynamics (contaminated by noise) as the original system.
The scalar surrogate time series �x�s�

t �N
t�1 is the first com-

ponent of successive values of st.
It is important to note that �st : t � 1, . . . , N � and

�zt : t � 1, . . . , Ñ � approximate the same attractor, but the
reconstruction

��x�s�
t , x

�s�
t2t , . . . , x

�s�
t2�de21�t� : t � �de 2 1�t 1 1, . . . , N �

does not. The attractor represented by this reconstruction
is only an approximation to the underlying attractor and
the sets �st : t � 1, . . . , N� and �zt : t � 1, . . . , Ñ�. An
example of this process for chaotic Rössler data is illus-
trated in Fig. 1.

Surrogates constructed in this way follow approximately
the same vector field as the original data, but are contami-
nated with dynamic noise in such a way that any existing
fine dynamics are obliterated. This includes any determin-
istic nonperiodic intercycle dynamic behavior, pseudoperi-
odic chaos, or periodic dynamics with colored noise. The

FIG. 1. Generation of PPS data from a chaotic Rössler time
series. The top panels show the reconstructed attractors (de � 3,
t � 8) for (a) the original data (N � 5000) and (b) the PPS
data. Also shown is (c) the full original time series, (d) the full
PPS time series, (e) a short section of the original, and (f) a short
section of the PPS data. The surrogate was constructed with
de � 3, t � 8, and r � 0.005. Note that the time series appear
virtually indistinguishable. Correlation dimension estimates for
the data and 30 PPS data sets are shown in Fig. 4.
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important point is the suitable selection of the parameter
r in (1). For large values of r the dynamics are poorly
approximated. If r is extremely large �r ! `�, then the
points st are simply temporally uncorrelated random points
in �zt : t � 1, . . . , Ñ� and the surrogate �x�s�

t �N
t�1 is equiv-

alent to an ordinary IID surrogate (sampled with replace-
ment rather than without). If r is too small �r ! 0� then
the surrogate and original are identical. One must choose
r so that the fine intercycle dynamics are obliterated but
the intracycle dynamics are preserved.

We select r to be the value which maximizes the ex-
pected number of short segments (of length 2) that are the
same for the original time series and a surrogate. This pro-
vides precisely the required balance between too much and
too little noise. Figure 2 demonstrates the selection of r
for the Rössler time series data.

The first of our applications of this algorithm is to the
Rössler system. The Rössler equations are given by

�x � 2� y 1 z� ,

�y � x 1 ay ,

�z � 2 1 z�x 2 4� .

For a � 0.398 this system exhibits broadband chaos, and
for a � 0.3909 it exhibits period 6 behavior [12]. For
these values of a we integrated this system for 5000 time
steps of 0.2 time units. In each case we added Gaussian
noise with a standard deviation of 0.05 to the x, y, and z
components at each step. These time series, along with
PPS data and reconstructed attractors, are illustrated in
Figs. 1 and 3.

For each time series and 30 PPS data sets we estimated
the correlation dimension according to the algorithm pre-
scribed in [10] (Fig. 4). For the chaotic system, the data
and surrogates are clearly distinct and in this case the
null hypothesis of a periodic orbit with uncorrelated noise
should be rejected. For the noisy period 6 system the data
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FIG. 2. Optimal selection of the parameter r. Panels (a) and
(b) are the same calculation for chaotic and periodic Rössler
systems, respectively. The time series are described in the text
and shown in Figs. 1 and 3. In each case the plot shows a count
of the number of times for which the data and a representative
surrogate (of length 5000, de � 3, t � 8) are identical for more
than n successive data points. The distinct curves in each plot
are (from top to bottom) for n � 2, 3, 4, 5, 10, 20, 30, and 50.
One clearly sees a distinct peak in each curve, suggesting an
optimal value of r.
188101-2
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FIG. 3. Generation of PPS data from a noisy period 6 Rössler
time series. The top panels show the reconstructed attractors
(de � 3, t � 8) for (a) the original data and (b) the PPS data.
Also shown is (c) the full original time series (N � 5000),
(d) the full PPS time series, (e) a short section of the original, and
(f ) a short section of the PPS data. This surrogate was con-
structed with de � 3, t � 8, and r � 0.0025. A large range
of values of r produced comparable results. Note that the time
series and reconstructed attractors appear virtually indistinguish-
able. Correlation dimension estimates for the data and 30 PPS
data sets confirm this and are shown in Fig. 4.

and surrogates are indistinguishable, and we are therefore
unable to reject the null hypothesis. These results are con-
sistent with what was expected.

We also tested this algorithm on periodic signals con-
taminated with various noise sources. Colored noise with
a decorrelation time greater than p was added to a peri-
odic signal of period p to produce a pseudoperiodic time
series with a linear stochastic dependence of the intercycle
intervals. The test signal was determined by the surrogate
algorithm to be inconsistent with the null hypothesis. In-
deed this is the simplest system that can lead to rejection
of the null. Conversely, white noise added to a periodic
signal was found to be consistent with the null.
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FIG. 4. Comparison of the correlation dimension for original
and PPS data for the Rössler system. Panel (a) shows correlation
dimension estimates (de � 3, t � 8) for the data shown in
Fig 1 and 30 PPS data sets. Panel (b) is the same calculation
for the data in Fig 3. For the chaotic time series the data and
surrogates are clearly distinguishable; however, for the noisy
periodic system there is no distinction.
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Finally, we consider the application of the PPS algo-
rithm to an experimental system. Figure 5 shows sections
of two recordings of human ECG during sinus rhythm and
VT. Each recording consists of 10 000 data points; the
sampling rates are 50 Hz for sinus rhythm and 100 Hz for
VT. Both time series were recorded with the experimental
protocol described in [13] and are digitized at 10 bits. PPS
data are also shown.

We repeated the calculation applied to the test data
with these experimental recordings. For sinus rhythm the
30 PPS data sets were clearly distinguished from the ECG
recordings. For ECG data recorded during VT the corre-
lation dimension estimated for the data is distinguishable
from the surrogates at the smallest length scales [log�e0�].
Hence, in both cases the null hypothesis of a periodic
orbit with uncorrelated noise can be rejected [Figs. 5(a)
and 5(b)].

The algorithm we have described in this Letter provides
a robust method to test pseudoperiodic time series data
against the null hypothesis of a periodic orbit with uncor-
related noise. Our results for data from the Rössler dy-
namical system, during periodic and chaotic regimes, and
from a periodic system with either white or colored noise,
demonstrate that this algorithm can differentiate between
the underlying dynamics in these cases. In the case of the
Rössler system data, the original time series are qualita-
tively similar in appearance, and uncovering the underly-
ing dynamics directly would be difficult.

The issue of selection of r and for experimental data,
de and t has also been considered. The embedding
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FIG. 5. PPS data calculation for human ECG data. Panel (a) is
the correlation dimension estimates (de � 6, t � 6) for human
ECG during sinus rhythm (N � 10 000) and 30 PPS data sets
(de � 6, t � 6, r � 0.005). Panel (b) is the correlation di-
mension estimates (de � 6, t � 6) for human ECG during VT
and 30 PPS data sets (de � 6, t � 6, r � 0.0002). Panel (c)
shows a short section of the ECG during sinus rhythm (50 Hz)
and panel (d) is a short section of the ECG during VT (100 Hz).
Panels (e) and (f) are representative surrogate data sets for each.
These surrogate tests indicate that human ECG during sinus
rhythm and VT is not consistent with an uncorrelated noisy pe-
riodic orbit.
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parameters de and t must be selected so that the underly-
ing dynamics are reconstructed by time delay embedding.
This has been discussed in great detail elsewhere (see, for
example, [14]). In this Letter, we provide a parameter-free
method to select an appropriate value of r. Excessively
large values destroyed the underlying dynamics, and led
to temporally uncorrelated surrogates. Small values meant
that the surrogates and data were virtually identical for
large portions of their trajectories. By computing the
effect of the variation of r on the expected frequency with
which a surrogate is identical to the original data we were
able to choose appropriate, intermediate values.

The dimension estimates shown in Figs. 4 and 5 provide
additional corroboration that this algorithm is performing
as proposed. For the data that led to the rejection of the
null hypothesis, the dimension estimates for data and PPS
time series differed most at small scale [small log�e0�].
This indicates that whereas at large scales the dynamics
of data and PPS are identical for small scale they are sig-
nificantly different. Therefore, the noise term (1) in the
PPS algorithm has obliterated the fine structure present in
the data.

Application of this algorithm to experimental data pro-
vided encouraging results. The experimental data used in
this paper are highly noisy. The PPS time series is quali-
tatively very similar to the original data. The result that
human ECG during both sinus rhythm and VT is consis-
tent with deterministic nonperiodic intercycle dynamics is
intriguing. This supports our observation of deterministic
nonlinear dynamics during ventricular fibrillation [15,16].
The relatively subtle distinction for VT also supports our
observation of comparatively low correlation dimension
and entropy during VT [16]. However, it must be noted
that the simplest explanation of this result is that the hu-
man ECG data are generated by a periodic system with
correlated stochastic forcing.
188101-4
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