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Dissipationless Spin Transport in Thin Film Ferromagnets
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Metallic thin film ferromagnets generically possess spiral states that carry dissipationless spin currents.
We relate the critical values of these supercurrents to micromagnetic material parameters, identify the
circumstances under which the supercurrents will be most robust, and propose experiments which could
reveal this new collective transport behavior.
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In ferromagnetic metals and semiconductors, quasipar-
ticle states can be manipulated by external magnetic fields
that couple to the spin-magnetization-density collective
coordinate. This property is responsible for related robust
magnetoresistance effects that occur in various geometries
such as anisotropic magnetoresistance in bulk samples,
giant magnetoresistance [1,2] in metallic multilayers,
and tunnel magnetoresistance [3,4] in tunnel junctions. In
this paper we propose a distinctly different type of spin-
dependent transport effect, in which spin current is carried
collectively rather than by quasiparticles. Because the
spin current is nonzero when its quasiparticles are in
equilibrium, it is carried without dissipation. This spin-
supercurrent state occurs only in easy-plane ferromagnets
and will be robust only when anisotropy within the easy
plane is weak. We propose an experiment to observe this
effect in thin films of ferromagnetic metals.

The key observation that motivates this proposal arises
by considering the class of excited states obtained from
the ferromagnetic ground state by following its adiabatic
evolution as equal and opposite constant vector poten-
tials are introduced for up and down spins, with the spin-
quantization axis perpendicular to the ferromagnet’s easy
plane. The many-particle Hamiltonian is
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with Hel-el �
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i,j e2�jri 2 rjj. The vector potentials
for spin s are As � Qs�h̄c�e� with Q" � 2Q# � Q�2.
They can be removed by gauge transformations, multi-
plying the many-particle wave function by exp�iQs ? r�
for each electron with spin s. In a paramagnet, the
ground-state wave function would, therefore, evolve trivi-
ally with Q and the ground-state energy would be inde-
pendent of Q. In a ferromagnet, however, a change in the
phase relationship between up spins and down spins alters
the magnetic order and will change the energy.

We start with a ground state that has a spontaneous spin
density along the x̂ direction. Its magnitude is m�r� �
0031-9007�01�87(18)�187202(4)$15.00
�Cy
" �r�C#�r��0, where Cs�r� is an electron field operator

for an electron with spin s �", #, and �· · ·�0 denotes a
ground-state expectation value. For small Q, Cs�r� !
exp�iQs ? r�Cs�r� and the order parameter rotates in the
x̂-ŷ plane as a function of r,

�s�r��Q � mQ�cos�Q ? r�x̂ 1 sin�Q ? r�ŷ� , (2)

i.e., it forms a spiral spin state. As Q increases, the order
parameter’s spatial dependence will [5] cause a decrease
in the magnetic condensation energy and in the magnitude
of the order parameter. Dependence of the ground-state
energy E on Q implies that these many-particle eigenstates
have finite current densities with equal magnitude and
opposite direction for up and down spins,
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where e�Q� is the energy per unit volume.
As we discuss at greater length below, easy-plane

anisotropy ascribes a topological character to the wave
vector Q, so that these currents can decay only by phase
slip processes that have large barriers, i.e., these are
dissipationless supercurrents.

Equation (3) is similar to the connection between the
exchange coupling of ferromagnets separated by a tunnel
junction and the spin currents that flow between them [6].
Our proposal for supercurrents in ferromagnets is related
to Anderson’s discussion of superconductivity [7] in terms
of magnetic order in an effective spin model; the physics
of the two ordered states appears similar if a particle-
hole transformation is made in one of the spin subspaces.
The supercurrents we propose are also related to those
supported in double-layer quantum Hall systems [8–12],
where ordered states form that are describable either as
pseudospin ferromagnets or as electron-hole-pair conden-
sates [13,14]. In fact, the role of magnetic anisotropy in
controlling the observability of these supercurrents is con-
nected in part with the role of band hybridization terms
in controlling the observability of collective electron-hole-
pair transport in excitonic insulators [15–18].
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To illustrate these ideas, we consider the simplest possible microscopic model of a metallic ferromagnet, a fermion
gas with delta-function repulsive particle-particle interactions Ud�ri 2 rj� treated in a mean-field approximation. The
unrestricted Hartree-Fock Hamiltonian for the ordered state with wave vector Q � Qx̂ is
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where ek � h̄2k2��2m�, the ordered-state quasi-
particle energies are Ek,6 � �ek1Q�2 1 ek2Q�2 6q

�ek1Q�2 2 ek2Q�2�2 1 4h2 ��2, and the effective mag-
netic field which splits the quasiparticle bands by 6h
with h � UmQ is determined self-consistently by
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The prime on the sum in Eq. (5) indicates restriction to
those wave vectors for which only the lower-energy quasi-
particle state is occupied.

The procedure described above provides a mean-field
approximation to the ferromagnet spin-supercurrent states.
In Fig. 1 we plot quasiparticle bands for a typical model of
this type at a moderately large value of Q � 0.5kF , where
kF is the Fermi wave vector for zero order parameter, and
eF is the Fermi energy [19]. The product UD�eF� was cho-
sen to be close to experimental values for Co and Fe (taken
from Ref. [20]). In this case the Stoner criterion [21] for
mean-field ferromagnetism, UD�eF� . 1, is satisfied. In
Fig. 2 we plot the order parameter mQ , the magnetic con-
densation energy econd, and the spin-supercurrent density
j as a function of the ordering wave vector Q. Note that
the current density is proportional to the derivative of the
condensation energy in agreement with the more general
discussion above.
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FIG. 1. Quasiparticle bands Ek,1 (upper solid curve) and Ek,2
(lower solid curve) for Q � 0.5kF , UD�eF� � 1.5, and ky �
kz � 0. For comparison we also show the dispersion ek1Q�2
and ek2Q�2 for zero order parameter (dashed lines).
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Our calculations demonstrate that spin supercurrents are
possible in states with equilibrium quasiparticle popula-
tions; elastic scattering from occupied to unoccupied states
cannot provide the current decay mechanism familiar from
the standard theory of metallic transport. To establish the
stability of the spin currents it is, however, still necessary
to show that the spin-supercurrent state is stable against in-
finitesimal distortions of its order-parameter field. In what
follows, we demonstrate that magnetic anisotropy is nec-
essary for stability. Since real metallic ferromagnets are
much more complex than the toy model system discussed
above, we now turn to a phenomenological approach that
will allow us to relate critical currents to known micro-
magnetic parameters.

We consider a generalized Landau-Ginzburg model for
the dependence of an easy-plane ferromagnet’s free-energy
density [20,22] on its magnetic state:

f � 2jajM ? M 1
b

2
�M ? M�2 1 Ãj=Mj2 1 K̃M2

z .

(6)
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FIG. 2. The order parameter mQ normalized to electron density
ne , the magnetic condensation-energy density econd normalized
to the energy density of the disordered state, e0 � �3�5�neeF ,
and the spin supercurrent density j � j" � 2j# normalized to
j0 � eneh̄kF�m as a function of the ordering wave vector Q for
UD�eF� � 1.5. The dashed lines indicate an instability regime
against phase separation into regions with larger and smaller Q.
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The free energy of this model is minimized by a constant
magnetization in the x̂-ŷ easy plane with magnitude
M0 �

p
jaj�b. The resulting dependence of energy

density on magnetization orientation at fixed magnitude
allows us to identify A � ÃM2

0 with the exchange constant
and K � K̃M2

0 with the uniaxial anisotropy coefficient of
the ferromagnet’s micromagnetic energy functional [20].
The spin-supercurrent state has magnetization MQ�x� �
MQ �cos�Qx�, sin�Qx�, 0�, where M2

Q � �jaj 2 ÃQ2��b

is decreasing with Q as in our microscopic calculations.
Using Eq. (3), we find that the spin-supercurrent density is

j�Q� �
2eÃQ

h̄b
�jaj 2 ÃQ2� , (7)

reaching a maximum at Qph, where ÃQ2
ph � jaj�3.

Expanding around the spin-supercurrent state free-
energy extremum, we find that

df � 2bM2
QM2
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where Ma and Mph are the amplitude and phase fluc-
tuations of the easy-plane magnetization (the projections
along and perpendicular to MQ), while Mz is the hard-axis
fluctuation. The translationally invariant kernel of this
quadratic form has three wave vector �p� dependent eigen-
values:

K6 � bM2
Q 1 Ãp2 6

q
b2M4

Q 1 4Ã2Q2p2
x , (9)

Kzz � K̃ 2 ÃQ2 1 Ãp2. (10)

It follows from Eq. (9) that the spin-supercurrent state
is stable against easy-plane fluctuations provided that Q
is smaller than Qph; at larger values of Q, energy can
be lowered by phase separation into regions with larger
and smaller Q. For the soft ferromagnets we have in
mind, however, it is the out-of-plane fluctuations, described
by Eq. (10), that become unstable first. For Q . Qz �p

K�A, the spin supercurrent can relax by tilting out of
the easy plane to one of the poles and unwinding phase
with no energy cost. In Table I we list Qz values and
the corresponding critical current densities jcrit � j�Qz�
for some common soft thin film magnets, including only
the shape (magnetostatic) contribution Kshape � m0M2

0�2
to K. From our model calculation and the results shown
in Fig. 2, we conclude that Qph is typically of the order of
the Fermi wave vector kF , i.e., much larger than Qz . To
estimate jcrit we can, therefore, linearize Eq. (7) in Q,

jcrit � 2
e

h̄
AQz � 2

e

h̄

q
AKshape , (11)

to obtain the large critical currents listed in Table I.
We have thus far neglected magnetocrystalline

anisotropy, since it is much weaker than shape anisotropy
in the situation we have in mind. It does, however, break
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TABLE I. Saturation moment m0M0, exchange constant A,
cubic anisotropy constant K

�c�
1 , critical wave vector Qz , critical

spin current density jcrit, and ratio of minimum to critical spin
current density for common soft thin film magnets. The values
for m0M0, A, and K

�c�
1 are taken from Ref. [20].

Fe Co Ni

m0M0 [T] 2.15 1.81 0.62
A �pJ m21� 8.3 10.3 3.4

K
�c�
1 �MJ m23� 0.048 20.005
Qz �nm21� 0.47 0.36 0.21

jcrit �A cm22� 1.19 3 109 1.11 3 109 2.2 3 108

jmin�jcrit 0.013 0.015

rotational symmetry within the easy plane and has the ten-
dency to fix the phase and, thus, to suppress the supercur-
rents. When an in-plane anisotropy term is included in the
energy-density functional, extrema at small phase winding
rates consist of weakly coupled solitons in which the
magnetization goes from one in-plane minima to another.
(Q � uNs�L, where u is the angle between in-plane
minima and Ns�L is the soliton density.) The energy
density at small Q is proportional to the number of
solitons. As a consequence, the minimum spin-current
density jmin, that can be supported by a spin-supercurrent
state, is nonzero. To estimate jmin for cubic materials, we
include the leading-order bulk cubic anisotropy [20] in the

energy density, K
�c�
1 sin2w cos2w, where w is the angle of

the order parameter within the easy plane. For small Q
the functional is minimized by a kink soliton solution. By
evaluating the energy of in-plane solitons of this model,
we find from Eq. (3) that

jmin

jcrit
�

1
4p

vuut K
�c�
1

Kshape
, (12)

which is of the order of 1.5% (see Table I). �100� hcp
cobalt thin films with in-plane easy axis will typically
have still smaller values of jmin because of the higher
hexagonal symmetry. From these considerations, we con-
clude that spin supercurrents will be observable at mod-
erate current densities only in materials that have weak
magnetic anisotropy within the easy plane. Because of
their extremely weak magnetocrystalline anisotropies, ho-
mogeneous permalloy samples might be ideal candidates
for the experiments proposed below. Although the coarse
grained in-plane magnetic anisotropy can, in principle, be
fine-tuned to zero, spin-rotational invariance in the easy
plane will always be broken by disorder terms in the micro-
scopic Hamiltonian. Since dissipationless spin supercur-
rents will not occur if these disorder terms are too strong,
the effects we propose are more likely to be observable in
homogeneous alloys.

One possible experimental arrangement in which this
collective transport phenomena could be detected is illus-
trated schematically in Fig. 3. An easy-plane thin film
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FIG. 3. Schematic illustration of one possible experimental
setup to prepare a spin-supercurrent state.

ferromagnet (F) is connected to four spin-selective leads
(full spin polarization in the leads is optimal but not re-
quired) that feed opposing up and down spin currents,
where “up” and “down” refer to the direction perpendicu-
lar to the thin film. We emphasize that, even with recent
advances in transition metal ferromagnet spintronics, real-
izing a system with this geometry represents an experimen-
tal challenge. In this setup, a quasiparticle current would
flow dissipatively between upper and lower leads on both
the left- and right-hand side of the thin film ferromagnet.
A sizable voltage drop (measured, e.g., between the upper
leads), proportional to the injected currents, would result.
Its exact value depends on the resistivity of the ferromagnet
and on details of the geometry and is not a concern here.
If the collective transport effect predicted here occurred,
however, currents with opposite spin would flow without
a voltage drop across the sample, from left to right and
vice versa. Dissipationless current flow in the bulk could
still be masked by resistance in the film-lead contacts or
by collective spiral wave phase-slip processes. Our un-
certainty in the magnitude of the contact resistances com-
pared to the quasiparticle resistance makes our proposal
somewhat speculative. A collective element to the spin
transport could be unambiguously identified by driving the
critical current density j through either the maximum or
the minimum current, jcrit or jmin, or by reversing the spin
orientations of the leads on one side of the sample. The
later change would have no effect on the measured volt-
age if the current were carried entirely by quasiparticles but
would increase the voltage if part of the current was carried
collectively.

In conclusion, we have examined circumstances under
which dissipationless spin supercurrents, associated with
spiral magnetic order, can occur in thin film ferromagnets.
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We have estimated critical values of these supercurrents
and proposed an experiment to generate and detect this
new collective transport behavior.
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