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Fermi Liquid to Luttinger Liquid Transition at the Edge of a Two-Dimensional Electron Gas
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We present experimental results on the tunneling into the edge of a two-dimensional electron gas
(2DEG) obtained with a GaAs�AlGaAs cleaved edge overgrown structure. While the 2DEG exhibits
typical fractional quantum Hall features of a very high mobility sample, we observe the onset of a
nonlinear current-voltage characteristic in the vicinity of n � 1. For filling factor n , 1 the system is
consistent with a non-Fermi liquid behavior, such as a Luttinger liquid, whereas for n . 1 we observe an
Ohmic tunneling resistance between the edge and a three-dimensional contact, typical for a Fermi liquid.
Finally, we show that the Luttinger liquid exponent at a given filling factor is not universal but depends on
sample parameters.
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In one dimension and in the presence of interactions,
a metal can have a Fermi surface in agreement with Lut-
tinger’s theorem [1]. However, fermionic quasiparticles
are no longer possible and the elementary excitations are
replaced by bosonic charge and spin fluctuations dispers-
ing with different velocities. Hence, this one-dimensional
metal is no longer a Fermi liquid but a Luttinger liquid (LL)
[2]. Models describing one-dimensional interacting fermi-
ons were first considered by Tomonaga and Luttinger [3].

In a pioneering work on the fractional quantum Hall
(FQH) states, Wen [4] showed that the edge modes can
be represented as chiral LLs. The chirality is due to the
presence of a magnetic field, which forces the edge states
to propagate in one direction. A unique feature of the chi-
ral LL is the absence of backscattering, i.e., no localiza-
tion can occur. A key theoretical result is the existence of
power-law correlation functions, which leads to the vanish-
ing of the momentum distribution function at kF following
a power law, i.e., n�k� � jk 2 kF j

a , where a is related to
the interaction strength. As a consequence, the tunneling
current-voltage (I-V ) characteristics follow I � Va [4].
For the particular case where the filling factor n � 1�3,
Wen predicted that a � 3, hence the tunneling current
should vanish like I � V 3 when tunneling from a Fermi
liquid into a Luttinger liquid. This is very different from
the Fermi liquid to the Fermi liquid tunneling which would
be Ohmic.

Following the predictions of Wen [4] and others [5], sev-
eral experimental attempts were made in order to observe
this power-law dependence. The first experiments con-
sidered a gate induced constriction to tunnel between two
FQHE liquids [6,7]. Unfortunately, in some cases the re-
sults were consistent with a power law [6] but not in others
[7]. This was largely attributed to the smoothness of the
potential barrier causing the possible reconstruction of the
edge and an energy dependent tunneling barrier. Chang
et al. [8] avoided this problem by growing a sharp tunnel-
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ing barrier on the cleaved edge of a two-dimensional elec-
tron gas (2DEG). They obtained a good power law over
more than a decade in voltage to obtain a tunneling expo-
nent (a � 2.7 at n � 1�3) close to Wen’s prediction.

When moving away from the primary fraction n � 1�3
to n � p��2np 6 1� (where p and n are positive inte-
gers), the edge can no longer be described by a single LL
edge mode but requires several additional modes, the num-
ber and nature of which depend strongly on the particular
fraction and, moreover, the disorder becomes important
because of possible intermode scattering. The overall
structure of these states is reviewed in Ref. [9]. As a conse-
quence, the recent experimental result from Grayson et al.
[10] came as a surprise, because instead of observing a
plateaulike structure between n21 � 2 and 3, as expected
from both the composite fermion theory [11,12] and a dis-
ordered edge in the hierarchical model [13], they observed
a linear dependence of the exponent on the inverse fill-
ing factor, a � n21. Recent theories have attempted to
account for this behavior using different approaches [14]
and are currently under debate. Subsequent experimental
work indicated a weak plateau feature at a � 2.7, sug-
gesting a stable single edge mode, but for n21 � 3 or 4.5,
depending on the sample [15]. At low filling factors, a tun-
neling resonance consistent with Luttinger liquid behavior
was recently observed [16].

In this Letter, we probe for the first time the edge of the
2DEG over a large range in filling factors from n � 1�3
to B � 0, hence also higher Landau levels. In order to
achieve this we start with a very high mobility 2DEG
(m . 10 3 106 cm22�V s) confined in a symmetrically
doped GaAs�AlGaAs quantum well. The quantum well
is then placed in the molecular beam epitaxy chamber and
cleaved for subsequent growth along the (110) direction.
An atomically sharp barrier of (AlxGa12xAs) is grown and
then a 5000 Å n-doped GaAs layer [17]. In order to probe
a large voltage range, we fixed the height of the barrier
© 2001 The American Physical Society 186806-1
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at a high value, i.e., 200 meV by using x � 20% as bar-
rier material. The low temperature (30 mK) and zero-field
tunneling resistance can be varied by using different bar-
rier widths (20–120 Å). For the thinnest barrier (20 Å) the
tunneling resistance is even smaller than the 2D resistance,
whereas for the thickest 120 Å barrier the tunneling resis-
tance is 200 kV. Therefore, most of the results in this pa-
per are based on the 60 and 120 Å barriers as they cover our
B-field range of interest, including the low-field regime.
Thanks to the high tunneling resistance we were able
for the first time to measure the 3D Shubnikov–de Haas
oscillations directly on the edge because the 2D does not
short the edge. This enables us to extract the effective
3D Fermi energy directly. In Fig. 1, we have plotted the
magnetoresistance of the edge, measured with an ac resis-
tance bridge, and obtained a 3D Fermi energy of 33 meV
(n3D � 4.5 3 1017 cm23). This can be compared to the
Fermi energy of the 2DEG, which is 13 meV for a 2DEG
density of n � 2.2 3 1011 cm22 in a 300 Å quantum well
(6 meV). Hence, the Fermi energy mismatch is 20 meV.
The value of the mismatch is important when evaluating
the internal electrical field building up at the interface due
to the mobile carriers. This bend bending could affect the
density at the edge of the 2DEG compared to the density
of the bulk 2DEG.

The magnetoresistance trace of the 2DEG system is
shown in Fig. 2 and exhibits typical features between Lan-
dau levels characteristic of a very high mobility 2DEG. In
the same figure, the tunneling resistance across the barrier,
between the 2DEG and the edge, is plotted as a function
of the magnetic field for different voltages. The overall
magnetic field dependence is dominated by an exponen-
tial increase of the resistance as a function of B. Two
effects contribute to this increase in resistance. Indeed,
for a perfect barrier the momentum conservation parallel
to the barrier is suppressed by a quantizing magnetic field.
However, scattering along the barrier can reduce this ef-
fect. Also, the penetration length orthogonal to the barrier

FIG. 1. Magnetoresistance measured directly on the edge as
a function of the normalized inverse magnetic field at 30 mK.
The contacts used were 1 and 8, as represented in the sketch of
Fig. 2.
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is exponentially suppressed by the square of the magnetic
length.

The most important feature in this figure is that below
6.5 T the tunneling resistance is independent of the volt-
age, whereas above 6.5 T the resistance is strongly voltage
dependent, i.e., the resistance is not Ohmic. When using
a narrower barrier, such as 60 Å, we obtain the same B
field for the onset of nonlinearity, but at a much smaller
tunneling resistance. Hence, the onset of nonlinearity de-
pends only on B and not on the value of the tunneling
resistance. This overall behavior is very suggestive of a
transition from a Fermi liquid (Ohmicity) to a LL, where
BC � 6.5 T would be the critical field of the transition.
This B field corresponds to a filling factor of n � 1.3. In
order to investigate this behavior further we now analyze
the nonlinearity in more detail and compare it with Wen’s
[4] theoretical prediction for a chiral LL.

We start by plotting in Fig. 3 the I-V characteristics
across the barrier for different B’s at 30 mK. The I-V’s are
obtained by measuring the dc traces, unlike Refs. [8,10],
where an ac voltage was applied. For clarity we have
plotted only the I-V traces, where a positive bias was
applied to the edge, i.e., electrons tunnel out of the 2DEG.
The negative bias data is identical up to a voltage of about
2 mV, above which strong asymmetries arise. For a more
detailed discussion of these asymmetries beyond 2 mV,
the reader is referred to [18]. When limiting our range of
interest from 0.2 to 2 mV, two regimes can be identified:
for B # BC, where BC � 6.5 T, the I-V ’s are linear, but
for B . BC the I-V’s follow a power law larger than 1. To
extract the power-law exponent, a, we performed a least
squares fit including all data in that range. The fits are
shown in dotted lines along with the data in solid lines.
The quality of the fit is very good over this voltage range,

FIG. 2. The magnetoresistance, R422,526, of the 2DEG as a
function of the magnetic field is plotted in dotted lines. The
tunneling resistance, R628,628, is plotted for voltages of 2, 1,
0.5, 0.16, 0.06 mV applied across the barrier. R422,526 was
obtained by measuring the voltage between contacts 5 and 6
and applying an AC (,5 Hz) current (10 nA) between contacts
4 and 2. For R628,628 we applied a negative dc bias on contact 8
corresponding to the edge. All traces were obtained at 30 mK.
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FIG. 3. Current voltage characteristics on a logarithmic scale
at B � 4, 4.5, 5, . . . , 14, 15.3 T. The thick line corresponds to
B � 6.5 T. The dotted lines are the linear log-log fits to the
data.

but below 0.2 mV there are deviations from the power law,
which can be attributed to finite temperature effects and to
limitations in our experimental sensitivity. Above 2 mV we
also have deviations from a power law, which are probably
not related to the LL behavior, because similar deviations
are also seen at B � 0 and are not symmetric with respect
to the sign of the bias. For the data above 6.5 T the shapes
of the I-V ’s are very similar to the ones in Refs. [8,10],
which were attributed to the LL behavior.

When further increasing B, the power-law exponent a

increases gradually and is plotted in Fig. 4 for two different
barriers 120 and 60 Å. Below 6.5 T, a is essentially con-
stant. The crossing of the linear extrapolation between the
points above 7 T (dotted line) and a � 1 is at 6.7 T, which
is very close to the onset of nonlinearity BC � 6.5 T of
Fig. 2. Interestingly, the small difference in resistance at
different voltages between 4.5 and 6.5 T in Fig. 2 is re-

FIG. 4. Exponent a extracted from the power-law part of the
I-V curves as a function of B and filling factor n. The circles
represent a 120-Å-wide barrier and the squares represent a 60-Å-
wide barrier.
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flected in Fig. 4, by a value of a slightly above 1, for the
same B-field range.

For reference, we have also plotted the results for the
120 Å barrier width in Fig. 4. Although, the two barriers
(60 and 120 Å) have very different tunneling resistances,
the overall dependence of a is very similar. Because the
tunneling resistance of the 60 Å barrier is much smaller,
we can extract the exponent a to a larger B. The ex-
perimental limit is given by our current noise level (10–
100 fA). For fields below 4 T the tunneling resistance of
the 60 Å barrier becomes comparable to the two-terminal
resistance of the 2D, implying that the barrier resistance
can no longer be extracted. In contrast, the 120 Å bar-
rier has a tunneling resistance much larger than the two-
terminal resistance even below 4 T (at B � 0 the tunneling
resistance is still 200 kV). Therefore, by using the 120 Å
barrier we can also cover all the low-field behavior. The
error bars shown in Fig. 4 are given by the mean square
deviation from a power law. The extraction of the expo-
nent is very robust when comparing positive to negative
bias. Indeed, when extracting the exponents from the nega-
tive bias I-V ’s (not shown), the exponents fall within less
than 10%.

Thus, for B . BC the I-V ’s follow a power law indica-
tive of a Luttinger liquid, whereas below BC we have a
standard Fermi liquid, hence BC represents the transition
between a Fermi liquid and a Luttinger liquid. Moreover,
this demonstrates that below BC the rich structure of the
fractional quantum Hall system is dominated at the edge
by a standard Fermi liquid mode. In our samples this tran-
sition occurs at a filling factor of nC � 1.3. This is very
different from the value obtained in Refs. [8,10], where
the extrapolation to a � 1 would yield n � 0.73. Fur-
ther, we obtain in our case a slope of a � 2.0n21 2 0.55,
whereas in Ref. [10] they obtained a � 1.16n21 2 0.58.
Hence, experimentally, for a fixed 2DEG filling factor the
value of the exponent is dependent on sample parameters,
although the onset of nonlinearity does not depend on the
barrier width or on the magnitude of the tunneling resis-
tance, when all other parameters are the same (such as for
our samples, with different barrier widths 60 and 120 Å).
Hence, the value of the exponent for a given filling factor
is different from the chiral LL predictions by Wen [4].

A possible explanation could be a shift in the local den-
sity distribution close to the edge. Indeed, our tunnel-
ing edge is at the interface between two differently doped
semiconductors, which leads to the band bending within
the characteristic depletion length [19]. In the simplest
case of two adjacent 3D n-doped semiconductors, the local
electron density of the side with the lowest Fermi energy
is enhanced at the interface. For a 2D-3D interface this is
not necessarily the case. Indeed, Levitov and co-workers
[12] used a Thomas-Fermi model, but without including
quantum confinement effects or a magnetic field to calcu-
late the density distribution of the 2DEG close to the edge
for a similar structure. They found that the 2D edge den-
sity could be about 25% smaller than in the bulk, when
186806-3
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the 3D has a 20 meV higher Fermi energy than the 2D,
as in our case. They further calculated that the 2D edge
density increases continuously with increasing 3D density.
However, when comparing two samples with the same 2D
Fermi energy of 17 meV but two different 3D Fermi en-
ergies (33 and 62 meV), we found a very similar onset of
nonlinearity for both samples at n � 0.65. This suggests
that a more involved theoretical treatment is necessary in
order to account for a possible edge density redistribution.
In particular, it may be crucial to include the effects of a
large B field as it is possible that the average density at the
edge is dependent on B.

Assuming, however, that we do have a different 2D fill-
ing factor at the edge than in the bulk and that the effective
nedge � 1 for the edge occurs at 6.7 T because the n � 1
state is expected to behave like a standard Fermi liquid
[9], we would obtain an edge density 24% smaller than the
bulk density. For the samples used by Grayson et al. [10],
the intercept where a � 1 would occur at n

21
edge � 1 if

the density at the edge of the 2DEG is assumed to be
40% larger than in the bulk. Rescaling our data by 224%
�nedge � 0.76 3 n� and Grayson’s data by 140%, we find
in both cases that �a 2 1� � 1.6�n21

edge 2 1�. This is very
intriguing, but it is not clear whether this is generic or not.
This shift in edge vs bulk 2D density, could also explain the
behavior in Ref. [15], where they observe a weak plateau
behavior for lower filling factors than expected.

In the following we compare our results with existing
theories. Most theoretical results fall in two main classes.
In one group, calculations are consistent with �a 2 1� �
2�n21 2 1� and 1 , n21 , 2 [4,5,9,11–13], and in the
other group the calculations are consistent with �a 2 1� �
�n21 2 1� [14]. However, none of the experimental curves
fall clearly on one of these theoretical dependencies, even
if we assume a shift in the edge versus bulk 2D density.
More recently, numerical calculations have also questioned
the universality of the exponent [20]. We believe that a
more detailed analysis of the edge distribution is needed
in order to resolve this issue.

In conclusion, we observed a Luttinger liquid to Fermi
liquid transition by tunneling into the edge of a 2DEG sys-
tem. For high filling factors, our results indicate that one or
several Fermi liquid outer edge modes dominate the edge
physics at higher filling factors. We further showed that the
Luttinger liquid exponent is not universal in relation to the
bulk two-dimensional filling factor but that it can depend
on other sample parameters. This dependence, however,
could be due to a shift in the 2D edge density.
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