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We have studied the magnetic-field-induced superconductor-insulator quantum phase transition in
one-dimensional arrays of small Josephson junctions. We found that the critical magnetic field that
separates the two phases corresponds to the onset of Coulomb blockade of Cooper pairs tunneling in the
current-voltage characteristics. The resistance data are analyzed in the context of the superfluid-insulator
transition in one dimension, and a finite-temperature scaling analysis is performed to extract the criti-
cal exponents. The dynamical exponents z are determined to be close to 1, and the correlation length
exponents n are found to be approximately 0.3 and 0.45 in the two groups of measured samples.
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A 1D array of small Josephson junctions (JJ) provides
an ideal testing ground for the quantum phase transition be-
cause of controllable sample parameters and continuously
tunable Josephson coupling strength. Although there have
been many theoretical advances [1] for this system, only
a few experiments have been reported [2]. While scaling
analysis on 2D JJ arrays indicated a power law dependent
correlation length and critical exponents nz of the order
of unity [3], no scaling analysis on 1D arrays has been
reported to date. Theoretically, the kinetic energy term
in the Hamiltonian is generalized to a spacelike coupling
term on the imaginary time. With this additional dimen-
sion, a d-dimensional JJ array can be mapped to a clas-
sical �d 1 1�-dimensional XY model. However, the types
of governing phase transitions may not be the same in dif-
ferent dimensions [1,4]. In the �1 1 1�D XY model, for
instance, the exponentially dependent correlation length of
the Kosterlitz-Thouless-Berezinskii (KTB) transition [5]
should lead to scaling properties different from those in
a �2 1 1�D model. Furthermore, the effect of dissipation
is also predicted to change the isotropic XY model to an
anisotropic one [6]. These properties can be explored by
utilizing the scaling analysis. In this study we investigate
the scaling behavior in 1D JJ arrays by using a magnetic
field to continuously tune the Josephson coupling strength
across the critical point. From the analysis, we find a power
law dependent correlation length and determine the corre-
lation length exponent n and the dynamical critical expo-
nent z.

As shown in Fig. 1(a), the measured arrays are com-
posed of I-shaped aluminum islands, whose sizes as de-
fined by electron beam lithography, are on the order of
1 mm. Each Al island has two tunnel junctions connected
in parallel to its nearest neighbors, and forms a SQUID
which is referred to as a unit cell. Being fabricated on
the same chip, each group of measured arrays (denoted as
groups A and B) having different cell numbers, N , should
have similar controlled parameters. Thus, length depen-
dence of the phase transition can be investigated. The nor-
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mal state resistances RT of each cell for the arrays, as listed
in Table I, are determined at high bias, V . N �2D0�e�.
The resistances for arrays in a group are quite similar, con-
firming the uniformity of the fabricated arrays. When mag-
netic field B is applied perpendicularly to SQUID loops
with area A, the Josephson coupling energy EJ can be
tuned periodically as EJ � E0

J cos�pAB�F0�, where F0

is the flux quantum. The zero field Josephson coupling E0
J

is determined using the T � 0 Ambegaokar-Baratoff for-
mula E0

J � �D0�2� �RQ�RT � with a superconducting gap
D0 of 200 meV, and a resistance quantum RQ of h�4e2 �
6.5 kV. Accordingly, the E0

J values are approximately
130 meV for arrays in group A, and 650 meV for ar-
rays in group B. From the scanning electron microscopy
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FIG. 1. (a) The SEM image of an 1D JJ array. The overlapping
areas between “I”-shaped islands are the tunnel junctions. The
scale bar at the bottom of the image is 1 mm. (b) Evolution of
IV characteristics for arrays A2, from supercurrentlike structure
to Coulomb blockadelike structure, at selected filling numbers
between 0.0 and 0.5 with step Df � 0.1. (c) Dynamic resis-
tance Rd as a function of bias voltage shows a crossover from
a superconducting (bottom, f � 0.42) to an insulating behavior
(top, f � 0.50) with Df � 0.02.
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TABLE I. Some important parameters of measured arrays.
The arrays that are fabricated on the same chip, and have thus
similar junction parameters, are categorized into one group.
Note the closeness between the critical filling numbers f� and
the correlation length exponents n for arrays in a group.

Sample A1 A2 A3 B1 B2 B3 B4

N 49 29 14 100 75 50 30
RT (kV� 0.9 1.1 0.9 5.0 4.7 4.3 4.9

f� 0.41 0.41 0.45 0.20 0.25 0.26 0.27
K� 1.0 0.9 0.7 0.72 0.70 0.71 0.66
nz 0.3 0.3 0.3 0.45 0.5 0.45 0.45

(SEM) image one can estimate the junction area, and infer
a junction capacitance C of 3.0 6 0.8 fF by using a spe-
cific capacitance of 45 fF�mm2 [7]. With this capacitance,
the charging energy for Cooper pairs, ECP � �2e�2�2C, is
106 6 35 meV, giving E0

J�ECP values of about 6 and 1.3
for arrays in groups A and B, respectively.

Transport measurements were conducted in a dilution
refrigerator at temperatures ranging between 40 mK and
1.5 K. Zero bias resistance R0 was taken from the slope of
I�V � characteristics at a very small bias, and it was further
confirmed by using a lock-in technique at a frequency of
1.7 Hz with an excitation of 20 nV. Sweeping a wide range
of magnetic fields at 40 mK, we determined the periodicity
of the magnetoresistance oscillation to be 9.15 G. With
this period DB, we denote the field as a dimensionless
filling number f � B�DB, which represents an average
number of flux quantum in one cell. At integer values of
f, the arrays are most conductive with R0 at a minimum,
while at half integer f values, the arrays become most
resistive with R0 at a maximum.

Figure 1(b) shows I�V� characteristics for array A2
measured at f � 0.0 0.5. For array A2 at f � 0
(i.e., the most superconducting curve), deviations of
the supercurrent of consisting junctions are quite small,
reaffirming the uniformity of these arrays. However, even
at f � 0, the array is not truly superconducting, but has
a finite zero bias resistance of 2 kV. The supercurrent
decreases with f and diminishes at f � 0.45, above which
the supercurrent-type structure turns into a Coulomb-
blockade-type structure, with zero bias resistance reaching
a maximum value of 5.5 MV at f � 0.5. The evolution
from one structure to the other is best represented by
Fig. 1(c), which shows a smooth crossover from dip to
hump structure with differential resistance Rd � dV�dI
as a function of bias voltage, and with a flat Rd�V � curve
separating the two limits.

Because of a smaller E0
J�ECP value, the I�V � char-

acteristics for array B1, as depicted in Fig. 2(a), have
a higher R0 of about 200 kV at f � 0 and 50 GV at
f � 0.5. The evolution of I�V� characteristics, from
the supercurrent-type structure to Coulomb-blockade-
type structure, for this array is quite different from that
of array A2: As f increases beyond f � 0.20, a small
186804-2
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FIG. 2. (a) I�V � characteristics and (b) differential resistance
Rd �V� for array B1 at f � 0 0.5 at 40 mK (Df � 0.1). Notice
the coexistence of hump and dip structures; this is not seen in
arrays in group A [cf. Fig. 1(c)]. The curves in (b) are shifted
by 0.25 decade each curve for clarity. The scale labels are for
curve with f � 0. (c) The f dependence of supercurrent (solid
square) and threshold voltage (open diamond) for array B1. Both
are converted to the energy scale, i.e., h̄IC�2e and eV . The
supercurrent is magnified 100 times.

Coulomb gap in the I�V � characteristic appears, signifying
competition between Josephson coupling and Coulomb
blockade of Cooper pair tunneling. This behavior can be
clearly seen in Fig. 2(b), which shows a coexistence of dip
and hump structures in the Rd�V � curves for intermediate
filling numbers. From these Rd�V � curves, supercurrent
and Coulomb blockade thresholds are plotted as a function
of f as shown in Fig. 2(c). Note that the two curves
cross each other, a feature different from that reported in
Ref. [2], with a considerably larger E0

J�ECP value (about
6.1) than those of our arrays in group B.

The temperature dependences of zero bias resistance
at various filling numbers for arrays A2 and B1 are de-
picted in Fig. 3. For the most insulating case, the conduc-
tance between 1 K and 150 mK fits the Arrhenius form
with an energy barrier of 120 meV, which is very close
to ECP. Similar behaviors are also reported in experi-
ments on 2D JJ arrays [8]. This suggests that the dynam-
ics is dominated by simple thermal activation of Cooper
pairs, because the strength of the Josephson coupling is
suppressed to the minimum. At even lower temperatures,
shorter arrays show a saturation of resistance probably due
to the finite size effect. For the most superconducting
case (i.e., f � 0), the resistance decreases with decreas-
ing temperature and levels off at low temperatures. We
emphasize that this leveling-off behavior is not due to any
unwanted high-frequency noises in the measurement sys-
tem for the following reasons: (1) the leveling-off tempera-
tures for S (superconductor) and I (insulator) sides are not
the same, and (2) the leveling-off temperatures for arrays in
the two groups are not the same. This leveling-off behav-
ior cannot be accounted for by heating effects because the
186804-2
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FIG. 3. The R0�T � as a function of the filling number f for
arrays A2 (a) and B1 (b). The f values are, from the bottom, 0.0,
0.20, 0.24, 0.26, 0.28, 0.32, 0.34, 0.37, 0.39, 0.41, 0.43, 0.46,
0.48, and 0.50 in (a) and 0.0, 0.125 to 0.500 with Df � 0.042
in (b). At T . Tcr, the array displays an f-tuned SI transition,
whereas at low temperatures the R0�T � curves in the S side level
off or rise. The vertical arrows indicate the calculated Tcr.

measured resistance is almost the same for both ac and dc
measurements.

Such leveling-off behaviors, similar to those seen in 2D
JJ array experiments [8], can be explained in the context of
vortex macroscopic quantum tunneling (MQT) [9]. Above
crossover temperature Tcr, the thermally activated vortex
motion dominates, while below Tcr the vortex MQT pre-
vails [10]. This Tcr is approximately h̄vp�2pkB, where
vp �

p
2ECPEJ is the vortex plasma frequency. Using

the EJ and ECP values for the measured arrays, we find a
good consistency between the calculated and measured Tcr
values. The measured Tcr for arrays in group A is about
0.75 K, and for arrays in group B, because of smaller E0

J
values, it is about 0.5 K. The leveling-off resistance is
found to be lower for arrays with stronger vortex dissipa-
tion. The strength of dissipation a is inversely propor-
tional to RT and is related to RQ as a � RQ�RT . A close
inspection reveals a separation point R0�T ! 0� � RQ ,
above which R0�T � curves move upward with decreasing
temperature (leveling off for the case of shorter arrays) and
below which R0�T � curves simply level off. Similar results
were also reported by Haviland and co-workers [2].

According to the theory of superfluid-insulator transition
in 1D systems [11], at the critical point f � f�, the resis-
tance is linearly proportional to the temperature. Experi-
mentally, f� is identified as the filling number where the
extrapolation of the R0�T � curve passes through R0 � 0,
T � 0 point. This is best seen in the inset of Fig. 4 which
shows a good crossing for all R0�T��T curves at the criti-
cal filling number. As a supplementary clue, we notice that
at the base temperature this critical filling number corre-
sponds to an onset of Coulomb blockade threshold voltage
[see Fig. 2(c)]. We thus interpret these phenomena as evi-
186804-3
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FIG. 4. The R0�d, T � scaling plot from 50 R0�T � curves for
array B1 for 0.5 , T , 1 K and 0.0 , f , 0.46 (jdj , 0.6).
The scaled R0�T � curves for various f are plotted in various
symbols. The upper inset shows the scaled T

1�n
1 dependence of

d as described in the text. Note that four arrays A1, A2, B1,
and B2 are scaled into a single curve which is better fitted with
a power law (solid line) than with an exponential law (dotted
curve). The lower inset shows a plot of R0�T dependence of
f at temperatures ranging from 0.5 to 1.0 K for array B1 with
DT � 0.1 K.

dence of a magnetic field-tuned SI phase transition with a
critical filling number f� in our measured arrays.

In a noninteracting model, the Hamiltonian of a 1D
array of small JJ can be mapped to a classical 2D XY
model. Theoretically, this mapping relates ECP and EJ

to a dimensionless coupling constant K in the XY model
as K �

p
EJ�2ECP [1]. In the 2D XY model, below the

KTB transition temperature TKTB the spins form vortex-
antivortex pairs, while above TKTB the pairs dissociate and
the whole system becomes a vortex plasma [5]. Note that
the topological spin vortex in the 2D XY model represents
the phase slip in 1D JJ arrays. In the system of 1D JJ ar-
ray, the corresponding KTB transition takes place at a criti-
cal coupling energy E�

J � E0
J cos�pf��, which is achieved

by the tuning of external magnetic field. In the region
EJ , E�

J , the phase fluctuations render insulating 1D JJ
arrays. According to the model, the transition takes place
at K� �

p
E�

J�2ECP � 2�p � 0.64 [4]; however, the ex-
perimental values are slightly larger than the theoretical
one. Despite the scattering of K� values in group A, the
values in group B are well consistent with one another.

Although the leveling-off behavior marks the break-
down of global superconductivity at low tempera-
tures, the theory of finite-temperature scaling allows
an appreciation of quantum phase transition using
finite-temperature data. The finite-temperature scal-
ing law of quantum phase transitions asserts that
O �k, v, K, LT � � LdO �zO �kL

1�z
T ,vLT , LT�jT �, where

LT � h̄b is a finite length on the imaginary time axis.
186804-3
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Some of the terms can be neglected: the wave vec-
tor k is assumed to be zero, the scaling dimension
dO � 2 2 d � 1 [11], and v � 0 in dc measure-
ments. We thus obtain a concise finite-size scaling form
for zero bias resistance, R0� f, T� � T 1�z eR0�1�Tjz�,
where j is a function of f. To examine the correlation
length dependence, we rewrite the scaling form as
R0�d, T� � T 1�z eR0�T1�T� where d � �K 2 K���K� is
the distance from the transition point and T1 is the field
dependent scaling parameter (see [12] for details). In
this way, as shown in the inset of Fig. 4, one obtains a
clear power law dependence of T1 on d over 1 order of
magnitude, suggesting a power law dependence of the
correlation length. Based on this analysis, the correlation
length j can be written as j � jdj2n where n is a critical
exponent. Finally, the scaling law can be written with a

scaling function eR0 as R0� f,T� � T 1�z 3 eR0� d

T �1�nz.
The exponent nz is determined from the slope of the

power law fitting. For the seven arrays measured, we find
that nz varies from 0.30 to 0.50 for different arrays. Nev-
ertheless, the same values of nz are obtained from both
S and I sides. Assuming a z value of unity and using
nz and K� values obtained from above, one can derive
the scaling curves such as that shown in Fig. 4 for array
B1. In addition, the scaling function form is found to be
eR0�x� ~ eax, with a � 62.3 and 62.5 (in unit of K1�nz ,
“1” for the I phase and “2” for the S phase), for arrays in
groups A and B, respectively. This form for resistance is
similar to results deduced from the variable-range hopping
(VRH) of Bose glass [13]. However, the VRH mecha-
nism should not be accounted for in our system since the
exponent on T is larger than 1. The fact that the scaling
function in one phase is symmetrical to that in the other
phases suggests that S and I phases play a dual role at zero
bias. To refine the critical filling number and the scaling
exponents, one begins with a trial scaling form, namely,
R0� f, T� � AT1�z exp�k� f ��T1�nz�. By noting that A is
an f-independent constant and that k is zero at f�, the nz
and f� values can be unambiguously determined. The only
adjustable parameter, z, can then be determined from the
scaling curves. This parameter can be determined to a rea-
sonable accuracy; a smaller z would give better scaling on
the S side, whereas a larger z would result in better scaling
on the I side. This fine-tuning procedure slightly modifies
nz and f� values, and gives a z value of 0.85 6 0.05 for
array B1. Furthermore, by comparing the trial scaling form
and the finite-size scaling form T1�z eR0�1�Tjz�, and using
the known k� f �, one can obtain a relationship between j
and d, which is converted from f. In this way, we find a
power law dependence of j on d, reaffirming the previous
analysis on T1�d�.

In summary, we have observed a magnetic field-tuned
SI phase transition in the system of 1D small Josephson
junction arrays, and have, for the first time, made scaling
analysis on such a system. The observed phase transitions
186804-4
are associated with the I�V � characteristics in a manner
that the critical magnetic field which separates the super-
conducting phase from the insulating phase corresponds
to the onset of Coulomb blockade threshold for Cooper
pairs. The exponents nz are found to be 0.3 to 0.5, with z
close to 1, implying an isotropy in spatial and time dimen-
sions. The value of correlation length exponent n contra-
dicts what is expected under the current theory of the 1D
boson system, n $ 2�d [13]. This discrepancy and the
breakdown of scaling at low temperatures depart from the
scope of current SI transition theory. These experimental
results suggest that certain important physics has not been
unearthed in this system.
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