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Roton Excitation Spectrum in Liquid Helium II
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We derive a one-particle quantum equation for roton excitations by considering rotons as bound states
of helium atoms. Our approach is based on a self-similar solution of the nonlinear Schrödinger equation
with a self-consistent confining potential in a roton cluster surrounded by the condensate. The symmetric
vibrational excitation of the roton determines the gap in the energy spectrum of the elementary excitations
in liquid He II. Analysis of the scattering process of long-wavelength neutrons from the liquid on the
basis of our theory leads directly to Landau’s roton spectrum of excitations with an effective roton mass
and energy spectrum gap that are in quantitative agreement with the experimental data.
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Sixty years ago, Landau [1,2] phenomenologically in-
troduced his famous roton energy spectrum to explain the
behavior of liquid helium II. Bogoliubov [3] developed
a theory for the elementary excitations of a dilute Bose
gas, and later there were several derivations to higher or-
der of the ground state of a low density Bose gas by Lee,
Yang, and Huang [4,5]. A rigorous consideration of the
leading term in the energy of a low density Bose gas has
been recently presented in Ref. [6]. The relation between
the energy spectrum of the elementary excitations of liq-
uid 4He and the structure factor of the liquid was found by
Feynman [7] and later improved by Feynman and Cohen
[8]. Moreover, Feynman proposed a model of the roton
excitation structure [9] as a vortex ring with characteris-
tic size of the order of the mean atomic distance in the
liquid helium II. Vortex rings carrying “quantum circula-
tion” were observed experimentally by Rayfield and Reif
[10], confirming that Feynman’s mechanism is respon-
sible for the breakdown of superfluidity in liquid helium
II [11,12]. To date, however, there has been no experi-
mental confirmation that the vortex ring and roton are the
same excitations in liquid helium.

In this Letter we present a new model of the roton struc-
ture and on this basis develop a theory which leads to Lan-
dau’s roton energy excitation spectrum in liquid helium II
and is in agreement with the experimental data obtained
by neutron scattering from the liquid. The full theory
of the roton excitation spectrum should include both the
many-body interactions in liquid helium II and an analy-
sis of the scattering process of neutrons from the liquid
[13,14]. Our treatment is based on the assumption that
in liquid 4He at temperature 0.6 & T & 1.2 K there exist
stable clusters which are bound states of some number Nc
of atoms 4He �Nc ¿ 1�. The number Nc of atoms in such
a roton cluster can be found by minimizing the free energy,
which constitutes the stability condition of the roton. Our
estimates show that the stable cluster should have approx-
imately spherical shape and Nc � 13. The mean radius a
of the cluster can be found from Nc � rVc�m, where r �
145 kg�m3 is the density of liquid helium [15] and Vc is the
0031-9007�01�87(18)�185302(4)$15.00
cluster volume, giving a � �3mNc��4pr��1�3 � 5.22 Å
at Nc � 13. A necessary condition for the existence of a
roton cluster is lD * 2a, where lD � 2p h̄�3mkBT�21�2

is the thermal wavelength, and hence T & 1.2 K [16].
We derive a nonlinear equation of motion for the mean

field (order parameter) cR�x, t� � �ĉa�x, t�� of the roton
by assuming that all atoms in the cluster are in the same
quantum state and by using a density matrix of the form
r � rR ≠ r0, where rR and r0 are the matrices of the
roton and of the surrounding equilibrium condensate at
fixed temperature [17]:
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1 Ũ0jcRj
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∂
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Here
R

Vc
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2d3x � Nc, Ũ0 � �4pa0h̄2�m� �Nc 2 1��Nc
is the repulsive interaction constant multiplied by Hartree
and normalization factors and a0 � 2.2 Å is the s-wave
scattering length of 4He atoms [12]. The confining poten-
tial UA�x� in Eq. (1) takes into account all forces between
atoms of the cluster and those of the surroundings, and also
long-range many-body attractive forces among atoms of
the cluster. We assume that the forces acting on the atoms
in the roton cluster have an oscillatory character; i.e., the
time-averaged forces are equal to zero, which leads to the
following equation for the self-consistent confining poten-
tial (valid when cR fi 0):

Ũ0jcR�x, t�j2 1 UA�x� � L , (2)

where the overline indicates time averaging and L is a
constant. We should thus solve the self-consistent system
of Eqs. (1) and (2) where Eq. (1) formally has the form
of a Gross-Pitaevskii equation [18,19] and where Eq. (2)
defines an unknown confining potential which depends
on the spatial coordinate x. This complicated problem
has a self-similar solution when the dimensionless pa-
rameter ´c � h̄2�2Ũ0ra2�21 is small, a condition that
is in practice verified for the above parameters: ´c �
a�6�Nc 2 1�a0�21 � 0.033. Using the self-similarity
method for the nonlinear Schrödinger equation [20,21]
generalized to 3D space we find the following solution
© 2001 The American Physical Society 185302-1
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of Eqs. (1) and (2) at ´c ø 1 for the amplitude
A�x, t� � jcR�x, t�j of the roton mean field:
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µ
15Nc
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when
P3

k�1�xk�ak�t��2 , 1 and A�x, t� � 0 whenP3
k�1�xk�ak�t��2 $ 1. The phase of the field cR�x, t� can

be written as
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where

f0�t� � f0�0� 2
15�Nc 2 1�a0h̄

2m

Z t

0

dt 0

a1�t0�a2�t0�a3�t0�
,

(5)
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m2
�a1a2a3ak�21. (6)

This is an asymptotical solution as ´c approaches 0, gen-
eralizing the Thomas-Fermi solution to the nonstationary
case [20]. The solution implies that the confining potential
UA�x� has the form

UA�x� �
m
2

3X
k�1

bkx2
k , (7)

where

bk �
15�Nc 2 1�a0h̄2

m2a1a2a3a2
k

, (8)

which really follows from Eqs. (2) and (3). We use this
self-similar solution to quantize the many-body problem
in the roton cluster in terms of elliptical coordinates. The
Hamiltonian of the roton cluster described by Eqs. (1) and
(2) for the mean field c�x, t� � cR�x, t��

p
Nc (normal-

ized to 1) has the form
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Using Eqs. (3)–(7) and calculating the integrals in Eq. (9)
we find
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Here pk � m0dak�dt, and the renormalized mass m0 and
interaction constant G are given by

m0 �
m

7
, G �

15�Nc 2 1�a0h̄2

7m
. (11)
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One can check that the Hamilton equations �ak �
≠H �≠pk and �pk � 2≠H �≠ak lead to Eqs. (6), which
means that ak are the generalized coordinates and pk

are the appropriate canonical momenta defined by the
Hamiltonian (10). The quantization of the Hamiltonian
(10) yields a Schrödinger equation for the roton wave
function x:
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where the potential V�a1,a2, a3� has the form

V �a1, a2, a3� �
m0

2

3X
k�1

bka2
k 1

G

a1a2a3
. (13)

The parameters bk should satisfy the stationarity condi-
tions �≠V �≠ak�ak�āk � 0, which leads again to Eqs. (8).
To find the oscillatory solutions of Eq. (12), we expand
the potential (13) up to the second order in terms of
the variables yk � �ak�ak� 2 1, where ak � a; i.e., we
assume spherical symmetry for the averaged elliptical
parameters. Diagonalization of this quadratic polynomial
by the linear transformation z1 � ay1 1 by2 1 gy3,
z2 � by1 1 ay2 1 gy3, and z3 � g�y1 1 y2 1 y3�
with a � 2�1�3 1

p
3�6�1�2, b � �1�3 2

p
3�6�1�2,

and g � 1�
p

3 yields the following stationary eigenstates:

�z1, z2,z3 jn� � Cn exp

µ
2

1
2

3X
k�1

j2
k

∂

3 Hn1�j1�Hn2 �j2�Hn3 �j3� . (14)

Here n � �n1, n2, n3� and nk � 0, 1, 2, . . . ; Hn�j� are the
Hermite polynomials, with jk � �m0vk�h̄�1�2zk, where
vk are given by

v1 � v2 �
q

2�5 v3, v3 �
5�3�Nc 2 1�a0�1�2h̄

ma5�2 .

(15)

The energy spectrum of these stationary solutions
(14) is

En � h̄v��n1 1 n2 1 1� 1 h̄v3�n3 1 1�2� 1 V ,
(16)

where v� �
p

2�5 v3 and V � 5G��2a3�. For s-wave
scattering processes of neutrons by a roton cluster in its
ground state j000�, the lowest possible excitations of the
roton are j001� and j110� because the transitions j000� !
j100� and j000� ! j010� are forbidden by the symmetry of
the scattering problem under reflection x1 ! x2, x2 ! x1
[17]. So the lowest excitation state of a roton by a neutron
is the symmetric vibration excitation j001�, with transition
vibrational energy h̄v3.

The measurement of the roton energy spectrum in liquid
He II by scattering long-wavelength neutrons [13,14] is
based on conservation laws that for our model of roton
cluster have the form
185302-2
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p2
i

2mn
1 Ki 1 Ei �

p2
f

2mn
1 Kf 1 Ef ,

pi 1 Pi � pf 1 Pf ,
(17)

where pi, Pi and pf, Pf are the initial and final momenta
of the neutron and roton clusters, Ki, Ei and Kf, Ef are
the initial and final kinetic and vibrational energies of the
roton cluster, mn is the neutron mass, and the mass of the
roton cluster is M � Ncm. The definition of the energy
of elementary excitation E�p� [13,14] with momentum
p � jpi 2 pfj by Eq. (17) can be written

E�p� 	
p2

i

2mn
2

p2
f

2mn
� h̄v3 1 Kf 2 Ki . (18)

Considering a quadratic term in the vicinity of a local mini-
mum p � p0 of the roton energy spectrum with respect to
variable d � p 2 p0 we find by Eqs. (17) and (18) the
average energy of roton excitation under initial momenta
Pi is

�E�p�� � h̄v3 1
2Nc�K �

p2
0

�p 2 p0�2. (19)

Here K is the initial kinetic energy per particle of the
roton cluster Ki � NcK . Writing �E�p�� � ´�p�, the
roton excitation spectrum is in Landau’s form [9,15]

´�p� � D 1
�p 2 p0�2

2mR
, (20)

where we find from Eq. (19) the explicit results for the
roton energy gap and effective roton mass

D �
5�3�Nc 2 1�a0�1�2h̄2

ma5�2 , mR �
p2

0

4Nc�K�
. (21)

In the general case, the average kinetic energy of a
particle in the roton cluster is the sum �K� � �KI� 1

�KT�, where �KI� and �KT� are internal energy and
center-of-mass kinetic energy, respectively. It follows from
Eq. (12) that the internal kinetic energy can be written

�KI� �
Z p2

2m0
W�p�d3p �

3X
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h̄vk

4
coth

µ
h̄vk

2kBT

∂
,
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where W�p� � �pjrRjp� is the momentum distribution

W �p� � C exp

µ
2

3X
k�1

tanh�h̄vk��2kBT��
h̄m0vk

p2
k

∂

for the three-dimensional harmonic oscillator given by the
wave functions (14) and energy spectrum (16) interacting
with the surrounding equilibrium condensate; C is a nor-
malization constant. At T � 1.1 K the internal kinetic en-
ergy given by Eqs. (15) and (22) with the above parameters
has the value �KI��kB � 4.95 K. The center-of-mass
kinetic energy of the atoms of the roton cluster may be
approximated by the energy of an ideal Bose gas per par-
ticle [9]: �KT��kB � 0.77�T�Tc�3�2T � 0.3 K using the
185302-3
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FIG. 1. Energy spectrum of roton excitations in liquid He II at
a temperature T � 1.1 K. The circles represent the experimental
data of Yarnell et al. [13], while the solid line is the theoretical
prediction.

experimental value Tc � 2.17 K. This yields the full ki-
netic energy �K��kB � 5.25 K.

The simple calculation of the momentum p0 � h̄k0
at the minimum of roton spectrum by k0 � 2p�L0 [9],
where L0 � a

p
3�7 is the classical average distance be-

tween atoms in the cluster leads to k0 � 1.84 Å21. We do
not consider here the rigorous evaluation of this parameter
but use instead in the calculations below the experimen-
tal value [13] k0 � �1.92 6 0.01� Å21, which is close to
our classical estimate. Using Eqs. (21) and the parame-
ters quoted above for Nc � 13, we find D�kB � 8.673 K
and mR�m � 0.1638, in excellent agreement with the ex-
perimental measurements of Yarnell et al. [13]: D�kB �
�8.65 6 0.04� K; mR � �0.16 6 0.01� m. Note that the
only free parameter in Eqs. (21) is the number of atoms in
the cluster. Choosing this to obtain the best fit to experi-
mental values fixes Nc � 13, the choice of Nc � 12 or
Nc � 14 giving results in error by approximately 2% 3%
for the gap in the energy spectrum. A cluster of 13 atoms
has a natural classical model as a central atom surrounded
by a shell of 12 atoms situated at the vertices of a regu-
lar icosahedron. The stability of this configuration is also
favored by its having the greatest number (six) of nearest
neighbors for each atom in a shell. We show in Fig. 1 the
experimental spectrum of the roton excitations in liquid He
II [13] and our theoretical prediction, given by Eqs. (20)
and (21).

We also note that the (linear) phonon region of the ele-
mentary excitation spectrum turns into the roton region at a
characteristic momentum pc � h̄kc. In our cluster model
it is natural to estimate this by kc � 2p�d � 0.6 Å21,
where d � 2a is the diameter of the cluster. This agrees
with the experimental value [14].

In conclusion, we have proposed a new model of the
roton excitation structure in liquid helium II. We have
developed a theoretical treatment of the roton excitation
spectrum which is in quantitative agreement with experi-
mental data from neutron scattering.
185302-3



VOLUME 87, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 OCTOBER 2001
Useful discussions with John D. Harvey and Stéphane
Coen are acknowledged. This work has been supported by
the Marsden Fund of the Royal Society of New Zealand.

[1] L. D. Landau, J. Phys. (Moscow) 5, 71 (1941).
[2] L. D. Landau, J. Phys. (Moscow) 11, 91 (1947).
[3] N. N. Bogoliubov, J. Phys. (Moscow) 11, 23 (1947).
[4] T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).
[5] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

(1957).
[6] E. H. Lieb and J. Yngvason, Phys. Rev. Lett. 80, 2504

(1998).
[7] R. P. Feynman, Phys. Rev. 91, 1291 (1953); 91, 1301

(1953); 94, 262 (1954).
[8] R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
[9] R. P. Feynman, Statistical Mechanics, A Set Of Lectures

(W. A. Benjamin, Reading, MA, 1972).
185302-4
[10] G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964).
[11] R. P. Feynman, Progress In Low Temperature Physics,

edited by C. J. Gorter (North-Holland, Amsterdam, 1955),
Vol. 1, p. 17.

[12] R. K. Pathria, Statistical Mechanics (University of Water-
loo, Waterloo, Ontario, Canada, 1996).

[13] J. L. Yarnell et al., Phys. Rev. 113, 1379 (1959); 113, 1386
(1959).

[14] D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121, 1266
(1961).

[15] E. Lifshitz and L. Pitaevskii, Statistical Physics (Pergamon,
Oxford, 1980), Pt. 2.

[16] I. M. Khalatnikov, Theory of Superfluidity (Nayka,
Moscow, 1971).

[17] V. I. Kruglov and M. J. Collett (to be published).
[18] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov.

Phys. JETP 13, 451 (1961)].
[19] E. P. Gross, Nuovo Cimento 20, 454 (1961); J. Math. Phys.

(N.Y.) 4, 195 (1963).
[20] V. I. Kruglov et al., Opt. Lett. 25, 1753 (2000).
[21] M. E. Fermann et al., Phys. Rev. Lett. 84, 6010 (2000).
185302-4


