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Does Turbulent Convection Feel the Shape of the Container?
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Temperature and vertical velocity fluctuations are measured in turbulent Rayleigh-Bénard convection
for Rayleigh numbers 2 3 108 , R , 4 3 109 in cells with cylindrical and square geometries with ap-
proximately unit-aspect ratios. The geometries are constructed such that they have the same height and
cross sectional area. We find, very unexpectedly, that both the magnitudes and scalings of fluctuations
as a function of R depend strongly on the geometry. This latter result implies a possible nonuniversal-
ity in internal fluctuations and poses significant difficulties for existing model descriptions of turbulent
convection.
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Turbulent Rayleigh-Bénard convection has been one of
the most studied problems in fluid turbulence over the past
decade [1,2]. The source of this abundant interest is that
turbulent convection is the fundamental process that drives
flows in the atmosphere and oceans, in the earth’s mantle,
and in gaseous planets and stars. To be relevant to these
natural phenomena that occur on large horizontal length
scales, it is essential to understand laterally extended sys-
tems. Laboratory experiments, however, have been con-
ducted in systems of comparable lateral and vertical extent,
the advantage being that larger forcing can be reached and
better experimental control can be achieved than in equiva-
lent laterally extended systems. One important question
regarding this system is whether results and theoretical de-
scriptions for small boxes apply to laterally large systems.
In other words, which aspects of convection are universal
and which depend on the details of lateral confinement?
Theoretical models [1–5] have sought to characterize tur-
bulent convection by its universal aspects and have broken
the problem into interacting boundary layer and bulk re-
gions with or without the influence of large scale shear.
Is this a valid procedure that captures the essential ele-
ments of the problem or is it too simple to describe the real
experiments?

Turbulent convection is often characterized by the glob-
ally averaged heat transport N as a function of the buoy-
ancy forcing parameter, the Rayleigh number R. Early
theories and experiments seemed to be consistent with
N � Rb with b � 1�3, but experiments in cryogenic he-
lium gas and subsequent scaling theories suggested that
b � 2�7 [1,2]. Recently, new experiments [6–9] that
span a larger range of R and s (the fluid Prandtl number)
showed that the situation is more complicated. Significant
agreement with these results was found using a model [5]
that involves multiple scaling regions and crossover effects
in the parameter space of R and s. Heat transport N�R� is,
however, a somewhat insensitive measure of the properties
of turbulent convection. For example, the total variation of
b in power-law fits to available heat transport data for flu-
ids with s . 0.5 is of order 10%. Further, the addition of
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rough boundaries [10], rotation [11], and internal obstruc-
tions [12,13], all of which cause large changes in bound-
ary-layer and turbulent-interior structures, barely modify
the heat transport scaling exponent [14].

A perspective that nicely complements heat transport is
obtained by measuring local quantities such as temperature
and velocity fluctuations in the deep interior of the cell.
Scaling theories suggest that, far from the walls, the scaling
of fluctuations should be roughly independent of the de-
tails of the container apart from a nonuniversal scale factor
that could depend, for example, on the ratio of lateral-to-
vertical length scales. Experimental measurements of
internal fluctuations, on the other hand, have shown
significant variability with quantitatively different re-
sults reported for different convection cells and fluids
[8,13,15–20].

We measured temperature and velocity fluctuations at
moderate R in a large, square convection cell filled with
water and with inserts of square and circular geometries
that have the same cross sectional area, 345 cm2; see
Fig. 1. The ratios of the length of a horizontal side for
the square and of the diameter for the cylinder to the cell
height d � 26.4 cm define, respectively, the aspect ratios
Gs � 0.70 and Gc � 0.79, where subscripts s and c denote
square and cylinder. Amazingly, the fluctuations deep in
the interior feel the geometry of the container, not just in
overall magnitude but in very different power-law scaling
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FIG. 1. Schematic illustration of the convection cell geometry
with (a) cylindrical insert and (b) square insert. The shaded
regions with arrows are illustrative of the large-scale circulatory
flow.
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with R. These results demonstrate that convection in
unit-aspect-ratio containers is more complicated than pre-
viously assumed and that the fluctuations result from some
intricate coupling between the boundary-layer plumes, the
large-scale circulation, and the inhomogeneous turbulence
in the cell interior. Existing scaling theories cannot ac-
count for such behavior.

The experimental convection cell was constructed of
anodized aluminum plates with 1.27-cm-thick polycarbon-
ate side walls. The top plate (1.9-cm thick) was tem-
perature regulated to within 60.003 ±C and constant heater
power was applied to the bottom plate (3.8-cm thick). The
mean temperature of each plate was measured as the av-
erage of four thermistors embedded at half height and dis-
tributed in a laterally even pattern. The thermistors were
calibrated with respect to an NBS traceable platinum ther-
mometer, and the temperature difference across the fluid
was corrected for the thermal conductivity of the aluminum
and the anodized aluminum coating. Heat supplied to
the bottom heater maintained a temperature difference DT
across the layer, resulting in a Rayleigh number, R �
gad3DT�nk, where g is the acceleration of gravity, d
is the cell height, a is the thermal expansion coefficient, n

is the kinematic viscosity, and k is the thermal diffusivity.
The maximum temperature difference was 8.61 ±C. Our
experiments did not deviate significantly from Boussinesq
conditions as measured by temperature drops across the top
and bottom boundary layers: the ratio x � DTtop�DTbot

was 0.92 , x , 1.04. The mean cell temperature was
maintained at 29.78 ±C corresponding to a Prandtl num-
ber s � n�k � 5.46. The convection cell was insulated
on the vertical and horizontal surfaces with 2.54-cm-thick
solid foam insulation and 5 cm of fiberglass insulation.
The inserts were 3.2-mm-thick acrylic and were attached
to the bottom plate with a thin layer of silicon rubber ad-
hesive. An O ring sealed the insert to the top plate, and
a 1.6 mm hole in each insert equalized the pressure be-
tween the fluid in the insert and the surrounding fluid in
the larger square container. Because the fluid in the outer
region was nearly isothermal owing to the turbulent con-
vection, it acted as another insulating layer and minimized
lateral heat flow at the insert side walls. The main effect
of the inserts was to confine the large scale circulation.

The rms temperature fluctuations sT were measured us-
ing a glass encapsulated semiconductor thermistor attached
at the end of a 2.5-mm-diam stainless steel tube. The probe
was positioned at the cell center to within 1 mm. The data
were sampled at 16.67 Hz. Each time sequence consisted
of 768 K points. Despite the insulation of the convection
cell and the regulated room temperature (61 ±C), the probe
signal was weakly correlated with room temperature varia-
tions. These trends were corrected by subtracting a linear
trend over 8 K point intervals. This procedure changed
slightly the overall magnitude of sT , but did not affect the
trend with respect to R. We normalize sT by DT . The
rms vertical velocity fluctuations sV were determined us-
ing a commercial laser Doppler velocimetry system. (This
184501-2
technique works well [15,21,22] since fluid in the cell in-
terior is nearly isothermal owing to strong turbulent mix-
ing.) Uniform 1.53 mm latex spheres were used to seed the
flow. As with the temperature measurements, the vertical
velocities were measured at the cell center and sampled at
16.67 Hz. Each data sequence consisted of 128 K points.
The mean velocity for the data sets was always less than
0.5 mm�sec which was significantly less than sV . We nor-
malize sV by n�d.

The normalized fluctuations sT �DT and sV d�n are
shown in Fig. 2 as a function of R. The large difference
in the variation of sT �DT with R in the cylindrical and
square inserts is apparent; a power-law fit to the data
yields exponents of 20.10 6 0.02 for the cylindrical
insert and 20.48 6 0.03 for the square insert. Theo-
retical predictions for this scaling exponent are 21�7
and 21�9 (see Ref. [3], and references therein). Measure-
ments of power-law exponents in cylindrical convection
cells using helium gas and water are consistent with 21�7
[8,13,16,17]. We compare our measurements to those in
water [13,17] in Fig. 2a. Given the somewhat different
aspect ratios and Prandtl numbers of these experiments,
our measurements are consistent, up to a multiplicative
constant, with these experiments. Similarly, our mea-
surements in the square insert are consistent with other
square-geometry experiments [18,19] that are also shown
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FIG. 2. Normalized (a) temperature sT�DT and (b) vertical
velocity fluctuations sV d�n measured at the cell center for
square (�) and cylindrical (≤) convection cell geometries vs
R. The solid lines are power-law fits to our measurements.
All other lines are power-law fits to other data. (a) Cylindrical
cells: dash-dotted line (Ref. [13]) and dashed line (Ref. [17]);
square cells: dotted line, � 2 � (Ref. [18]), and � (Ref. [19]).
(b) Cylindrical cells: dashed line (Ref. [20]) and � (Ref. [22]);
square cell: dash-dotted line (Ref. [24]).
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in Fig. 2a. The � 2 � line is a power-law fit to sT �DT
measured at a fixed distance from the sidewall of a square
cell [18]. Since the sT are larger at the cell boundary,
we have reduced them by a factor of 3 and compared
them with our data. Note that sT �DT measured at the
cell center or at the wall has the same power-law scaling
with R. To our knowledge, there are no other systematic
measurements of the Rayleigh-number dependence (at
similar R and s� of sT at the cell center in cells with
square cross section and approximately unit-aspect ratio.
However, the variation of sT �DT with R in the square
insert is dramatically different from that in the cylinder
and begs explanation.

The variation in sV d�n with R between the square
and cylindrical inserts is less pronounced than that for
sT �DT . The slopes are, however, distinctly different with
power-law exponents of 0.50 6 0.03 for the cylindrical in-
sert and 0.36 6 0.05 for the square insert. Two differ-
ent theoretical derivations for this scaling exponent yield
3�7 and 4�9 (see Ref. [3], and references therein). Other
experiments in cylindrical water cells are consistent with
power-law scaling with an exponent of 4�9 [15,20]. The
data of Refs. [20] and [22] are compared to our data in
Fig. 2b. Once again, considering the different aspect ra-
tios and Prandtl numbers, the measurements are consis-
tent. We are unaware of experiments in square cells of
approximately unit-aspect ratio with water in which sV

were measured at the cell center. However, experiments in
square cells, with SF6 at 27 , s , 93, give an exponent
of 0.42 6 0.02 [23]. On the other hand, measurements
in water, but at the sidewall where the fluctuations have
a maximum rms, give an exponent of 0.38 6 0.01 [24],
comparing favorably to our measurements. The sV at the
center are always smaller than at the sidewall. Using a fac-
tor of 2 reduction, we compare the data of Ref. [24], to our
measurements in Fig. 2b. Overall, the systematic uncer-
tainties in the fluctuations and the relatively short range in
R of about 1.3 decades preclude making a definitive state-
ment about the precise values of the scaling exponents for
either sT �DT or sVd�n. Nevertheless, it is the signifi-
cant difference between the inserts that interests us here.

The markedly different behavior between the circular
and square inserts demonstrates that the state of ther-
mal turbulence in the interior of approximately unit-
aspect-ratio convection cells and at moderate R has
important nonuniversal features. It is well known that
along the cell perimeter there is a large-scale circulatory
(LSC) flow. Plumes irregularly erupt and interact with
the LSC. A common assumption in models of turbulent
convection is that the interior regions of the cell are insu-
lated from boundaries by the LSC or by an intermediate
mixing zone. As a result the properties of turbulence
in the interior are assumed to depend only on the gross
features of the boundary layers (BLs) or the LSC. At
present, none of the turbulent convection models prescribe
any dependence of the properties of the BLs or the LSC
on detailed lateral constraints. If one were to subscribe to
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these models, then one must conclude that the necessary
features of the BLs and the LSC are the same for the
circular and square geometries, and thus the fluctuations
in the interior must be independent of geometry. Our
results manifestly refute this assumption.

How can we understand the differences in scaling be-
havior for temperature and velocity fluctuations between
square and cylindrical convection cells? The first ob-
servation is that, for R . 3 3 108, fluctuations in the
square are always smaller than in the cylinder. Second,
the ratio of fluctuations in the square to those in a cylin-
der decreases with increasing R: s

s
T �s

c
T � R20.38 and

s
s
V �s

c
V � R20.12. From other measurements [16,24], we

know that the mean LSC velocity �V̄� scales as R1�2 in
both square and cylindrical cells. Our results combined
with other velocity fluctuation measurements [24,25] show
that boundary and interior vertical velocity fluctuations
scale together, but with different exponents for square
s

s
Vd�n � R23�8 and cylindrical s

s
Vd�n � R21�2 geom-

etry. This means that the relative velocity fluctuations, i.e.,
the ratio sV �V̄ , become small for a square but remain con-
stant in a cylinder as R becomes large. Similar evidence
for temperature fluctuations in a square [18] show that the
scaling is the same at the sidewall and in the center. We
will then assume that temperature fluctuations at the side-
wall and in the center of a cylindrical cell also scale the
same way. What seems to be happening is that the cou-
pling of temperature fluctuations from the thermal bound-
ary layers and the LSC is more synchronous for square
geometry— increasingly so as R increases— so that the
flow fluctuates less in both velocity and temperature. Some
characteristic of the cylinder makes the flow less steady,
inducing larger fluctuations in the LSC and in the inte-
rior quantities. Although the origin of this coherence is
not clear, the sharp differences in scaling of fluctuations
for different geometries show that one cannot consider the
LSC and the boundary layers as decoupled quantities as
is assumed in existing theories. For example, the the-
ory of Grossman and Lohse [5] makes the assumption that
small-scale velocity fluctuations are driven completely by
the LSC and thus should scale with R in the same way.

Given the large differences in the magnitudes of the
temperature and velocity fluctuations in square and
cylindrical geometry, it is interesting to compare the
probability density functions (PDFs) of those fluctuations.
In Fig. 3, we show the PDFs of temperature and vertical
velocity fluctuations for the different cell geometries at
R � 2 3 109. Despite the large changes in the fluctuation
magnitudes, the PDFs are almost indistinguishable once
the temperature and velocity fluctuations are normalized
by sT and sV , respectively. Similarly, the corresponding
power spectra reveal no marked differences between the
square and cylindrical inserts. Further, measurements
of the heat transport in unit-aspect-ratio cylindrical and
cubical cells are, to within experimental uncertainty,
indistinguishable in both magnitude and scaling [24].
Although the heat transport, the normalized PDFs, and
184501-3
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FIG. 3. Probability distribution functions of (a) temperature
and (b) vertical velocity differences normalized, respectively,
by their standard deviations for square (�) and cylindrical (≤)
geometries for R � 2 3 109 and s � 5.46.

the power spectra do not differ significantly between the
geometries, the local temperature and velocity fluctuations
vary greatly.

We have demonstrated that the Rayleigh-number depen-
dence of the temperature and vertical velocity fluctuations
at the cell center is strongly modified by the geometry; in-
terior turbulent fluctuations are nonuniversal in low-aspect
ratio convection. It is not known whether this nonuniver-
sality is characteristic of the moderate Rayleigh numbers
of our experiments and/or of the low-aspect ratio. Turbu-
lent convection in nature typically has significantly higher
Rayleigh numbers and occurs on much larger horizontal
length scales. We conclude that the local properties of tur-
bulence measured in small convection cells and at moder-
ate R cannot be extrapolated to the laterally extended case.
Similarly, models of turbulent convection that neglect lat-
eral constraints provide an incomplete description of labo-
ratory experiments; our measurements in the square insert
are in clear disagreement with these models. Our second
conclusion is that different local states of turbulent convec-
tion may lead to an identical response in global properties,
and thus measuring global characteristics alone yields an
incomplete description of the flow. In the future, the cou-
184501-4
pling of the interior to the periphery must be investigated.
This will invariably require detailed measurements over
both small and large spatial regions. An understanding of
this mechanism would provide new input for the develop-
ment of successful models of turbulent Rayleigh-Bénard
convection. Finally, it is important to test whether inte-
rior fluctuations at higher Rayleigh numbers and in signifi-
cantly higher aspect-ratio cells are dependent on the lateral
geometry.
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