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In this Letter, we present a theoretical analysis of the acoustic transmission through two-dimensional
arrays of straight rigid cylinders placed parallel in the air. Both periodic and completely random arrange-
ments of the cylinders are considered. The results for the sound attenuation through the periodic arrays
are shown to be in remarkable agreement with the reported experimental data. As the arrangement of
the cylinders is randomized, the transmission is significantly reduced for a wider range of frequencies.
For the periodic arrays, the acoustic band structures are computed by the plane-wave expansion method
and are also shown to agree with previous results.
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When propagating through media containing many scat-
terers, waves will be scattered by each scatterer. The scat-
tered waves will be scattered again by other scatterers.
This process is repeated to establish an infinite recursive
pattern of rescattering between scatterers, forming a mul-
tiple scattering process [1,2]. Multiple scattering of waves
is responsible for a wide range of fascinating phenomena,
including twinkling light in the evening sky, modulation of
ocean ambient sound [3], and acoustic scintillation from
fish schools [4]. On smaller scales, phenomena such as
white paint, random laser [5], and electron transport in im-
pure solids [6] are also results of multiple scattering. When
waves propagate through media with periodic structures,
the multiple scattering leads to the ubiquitous phenome-
non of band structures. That is, waves can propagate in
certain frequency ranges and follow a dispersion relation,
while within other frequency regimes wave propagation is
stopped. The former ranges are called allowed bands and
the latter the forbidden bands. In certain situations, the
inhibition of wave propagation occurs for all directions,
leading to the phenomenon of complete band gaps.

The wave dispersion bands were first studied for elec-
tronic waves in solids, providing the basis for understand-
ing the properties of conductors, semiconductors, and
insulators [7]. In the late 1980s, it became known that
such a wave band phenomenon was also possible for elec-
tromagnetic waves in media with periodically modulated
refractive indices [8]. Since then, optical wave bands
have been studied extensively, yielding a rich body of
literature. The theoretical calculations matched well with
the experimental observations [9].

In contrast, research on acoustic wave band structures
has just started. Although theoretical computations of
band structures have been documented for periodic acous-
tic structures [10], the experimental work was only recent,
and to date only a limited number of measurements have
been reported. One of the first observations was made
on acoustic attenuation by a sculpture [11]. The authors
obtained a sound attenuation spectrum, which was later
verified by the band structure computation [12]. Recently,
0031-9007�01�87(18)�184301(4)$15.00
acoustic band structures have been further measured for
acoustic transmission through two-dimensional (2D) peri-
odic arrays of rigid cylinders placed in the air [13]. The
authors demonstrated the properties of sound attenuation
along two high-symmetry directions of the Brillouin zone
of the arrays. They also observed a peculiar effect of deaf
bands; within the bands, in spite of nonzero band states,
wave propagation is prohibited due to particular symmetry
of the states [13].

The main purpose of this Letter is to provide a theo-
retical investigation of sound transmission by 2D arrays of
rigid cylinders in air in line with the experiment of [13],
thus providing a direct comparison of attenuation between
theory and experiment. Such a direct comparison is rela-
tively scarce in the literature. We note that the compari-
son between the attenuation spectrum and the dispersion
bands is of an indirect nature, as the two are not neces-
sarily in one to one correspondence, as seen, for instance,
when some seemingly allowed bands are actually deaf to
wave transmission [13]. This will be further clarified in the
later results. Another goal is to study how randomness af-
fects acoustic transmission. For these purposes, we adopt
a self-consistent multiple scattering theory [14].

Consider N straight cylinders located at �ri with i �
1, 2, . . . , N to form either a regular lattice or a random ar-
ray perpendicular to the x-y plane; the regular arrangement
can be adjusted to comply with the experiment [13]. The
cylinders are along the z axis. An acoustic source transmit-
ting monochromatic waves is placed at �rs. The scattered
wave from each cylinder is a response to the total incident
wave composed of the direct wave from the source and the
multiply scattered waves from other cylinders. The final
wave reaching a receiver located at �rr is the sum of the di-
rect wave from the source and the scattered waves from all
the cylinders. Such a scattering problem can be formulated
exactly in the cylindrical coordinates, following Twersky
[14]. While the details are in [15], the essential procedure
is summarized below.

The scattered wave from the jth cylinder ( j � 1,
2, . . . , N) can be written as
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which can be expressed again in terms of a modal series
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The expansion is in terms of Bessel functions of the first
kind Jn to ensure that pi

in��r� does not blow up as �r ! �ri.
To solve for Ai

n and Bi
n, we express the scattered wave

ps� �r, �rj�, for each j fi i, in terms of the modes with re-
spect to the ith scatterer by the addition theorem for Bessel
functions [16]. The resulting formula for the scattered
wave ps� �r, �rj� is
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The direct incident wave around the location of the ith
cylinder can be expressed in a Bessel function expansion
with respect to coordinates centered at �ri ,
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l Jl�kj �r 2 �rij�eilf�r2�ri , (6)

with the known coefficients

Si
l � ipH
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Matching the coefficients in Eq. (2), using Eqs. (3), (4),
and (6), we have

Bi
n � Si

n 1

NX

j�1,jfii
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n . (7)

At this stage, both the Si
n are known, but both Bi

n and A
j
l

are unknown. Boundary conditions will give another equa-
tion relating them. The boundary conditions state that the
pressure and the normal velocity be continuous across the
interface between a scatterer and the surrounding medium.
After a deduction, we obtain

Bi
n � ipGi
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n , (8)
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Here the primes refer to taking derivative, ai is the radius
of the ith cylinder, gi � r

i
1�r is the density ratio, and

hi � k�ki
1 � ci

1�c is the sound speed ratio for the ith
cylinder.

The unknown coefficients Ai
n and Bj

n can be inverted
from Eqs. (5), (7), and (8). Once Ai

n are determined, the
transmitted wave at any spatial point is given by
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(10)

The acoustic intensity is represented by the squared mod-
ule of the transmitted wave. When the cylinders are placed
regularly, we can also obtain the band structures by the
plane wave method well documented in [10]. The pro-
grams used are identical to that used for computing the
acoustic bands in the regular arrays of air cylinders in
water [17].

Numerical computation has been carried out for experi-
mental situations [13] and also for a random array of the
cylinders. In the simulation, all the cylinders are assumed
to be the same, in accordance with the experiment. More-
over, the radii of the cylinders and the lattice constants
are also taken from the experiment. Several values for the
acoustic contrasts between the cylinder and the air were
used in the initial stage of computation. We found that the
results are in fact insensitive to this factor as long as the
contrasts exceed a certain value around 10. This agrees
with the experimental observation. In the results shown
below, we use g � 20.69 and h � 17.2 as the values for
the acoustic contrasts [13]. In the computation, we allow
the number of the total cylinders to vary from 100 to 500,
in line with the experiment. In the particular results shown
later, we assume that the cylinders are placed within a rect-
angular area of 8 3 40 of lattice domain. The source and
receiver are placed about one lattice constant away from
the long side of the array so as to minimize the effect due
to the finite sample size. As we do not know the specifi-
cations for the transmitter and the receiver, we assume an
omnidirectional transmitter as the acoustic source located
on one side of the array of the cylinders, whereas an om-
nidirectional receiver is placed on the other side to receive
the propagated waves.

In Fig. 1, we show the relative attenuation (� 2 ln jpj2)
spectra for various square lattices for acoustic transmission
along the [100] direction. The parameters for the four cases
considered are adopted from the experiment [13]. We ob-
serve a robust attenuation peak located around 1.5 kHz for
all the situation. By eye inspection of Fig. 1 and of Fig. 1
in [13], the agreement between the theoretical and the mea-
sured results is good, particularly in view of the finite di-
mension of the arrays and no adjustable parameters. The
height of the attenuation peaks depends on the locations of
either the receiver and the transmitter, on the outer bound-
ary of the cylinder arrays, and on the number of cylinders.
Nevertheless, the theoretical results describe quantitatively
184301-2
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FIG. 1. Theoretical results for the relative acoustic attenuation
along [100] as a function of frequency for various arrangements of
cylinders. The filling factors are 0.006, 0.026, 0.058, and 0.104
for d � 1, 2, 3,4 cm, respectively, taken from the experiment.

well the observation. A slight difference appears, however,
for the case with cylinders of diameter 1 cm at the filling
of 0.006. In our results, a small attenuation peak occurs
at about 1.5 kHz, but is absent from the experiment. This
discrepancy may be attributed to a couple of reasons: the
theoretical setting does not match exactly that in the ex-
periment and perhaps the attenuation peak is too small to
be observable experimentally. For frequencies within the
gap, the qualitative feature of the transmission is insensi-
tive to the arrangement of the transmitter and receiver. In
Fig. 1 we also observe some peaks located at higher fre-
quencies as observed in the experiment. These peaks are
sensitive to the arrangement of the transmitter and receiver,
and the number of the cylinders.

Figure 2 shows the attenuation (relative) spectra for the
case of cylinders of diameter 3 cm in a square lattice with
lattice constant 11 cm. The corresponding band structure
is also depicted. In the figure, the curves on the left denote
various dispersion bands when the wave is propagating in
different directions. The inserted box on the right panel
denotes the Brillouin zone. For example, GX refers to the
[100] direction, and GM refers to [110] direction, while
XM refers to the wave vector varying from [100] to [110]
on the side of the Brillouin zone.

The attenuation along the [100] and the [110] direc-
tions is represented in solid and dotted lines on the right
panel, respectively. Comparing Fig. 2 with the experimen-
tal Fig. 2 in [13], we see that the attenuation peak along
[100] coincides almost exactly with the experimental data
in the frequency range between 1.38 and 1.70 kHz. In this
particular case, the attenuation peaks are also roughly of
the same order of magnitude as in the observation. Along
the [110] direction, the attenuation due to the deaf bands is
also nicely recovered by the theory. That is, the two bands
184301-3
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FIG. 2. Right panel: Relative acoustic attenuation vs fre-
quency for a square array of cylinders with periodicity 11 cm.
The radius of the cylinders is 3 cm. Left panel: The band
structures computed by the plane-wave expansion method.

predicted by the band structure computation (the second
and the third bands in Fig. 2 for the range from M to G)
are actually deaf and wave propagation is prohibited within
these two bands. Similar results have also been reported
for 2D photonic band gap materials [9,18]. Further simu-
lation shows that, although the height of the attenuation
peaks may vary as the outer boundary of the cylinder ar-
rays changes, the overall shape of the attenuation spectra
remains unchanged.

We also notice that the width of the attenuation peak
along [110] is a little wider than the observation. In addi-
tion to the aforementioned reasons, this discrepancy could
be due to the fact that in the present simulation the cylin-
ders are assumed to be in the open air, while the experiment
was performed in a chamber which may somewhat still
reflect sound. Furthermore, the exact number and the set-
ting of the cylinders in the experiment are also not known
from the literature. Other contributions to the discrepancy
may result from the different acoustic source and receiver
used in the theory and experiment. In spite of these limi-
tations, the match between the theory and experiment is
quite encouraging.

The band structure shown in Fig. 2 is obtained by us-
ing the usual plane-wave method [10]. Here it is shown to
agree nicely with the band structure obtained by the vari-
ation method calculation. With the parameters in Fig. 2,
wave propagation in different directions is inhibited within
different frequency regimes. It was suggested that the
overlap of attenuation peaks along different directions, an
indication of the complete band gap, can be observed when
the cylinder filling factor exceeds certain values [13]. In
our simulation, there is no evidence for such overlapping.

Now consider the effect of randomness on the acoustic
transmission. Here we take the case described by Fig. 2
as the example. While keeping the same cylinder filling
and the outer boundary of the array, we allow the cylin-
ders to be distributed completely randomly within the area.
184301-3
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FIG. 3. The right panel shows the relative acoustic attenuation
vs frequency. Here the comparison is made between the results
from a square array with periodicity 11 cm (solid line) and from
a complete random array of cylinders (dotted line). The radius
of the cylinders is 3 cm. Left panel: Band structures computed
by the plane-wave expansion method.

The relative attenuation is computed again. The results are
shown in Fig. 3, with comparison to the results for wave
propagation along [100] for the corresponding square latter
array. The following features are evident. At low frequen-
cies, the introduced disorder does not affect the transmis-
sion for the given size of the sample. The randomness
reduces the transmission basically for all frequencies above
a critical frequency of 700 Hz, except for the frequencies
within the lowest stop band along [100] within which, al-
though the transmission is still inhibited, the disorder ac-
tually reduces the attenuation purely due to the stop-band
effect; such a feature is also observed in other acoustic sys-
tems [19]. As we increase the sample size, the critical fre-
quency tends to become smaller, implying larger ranges of
inhibition. Note that, in order to compute the transmission
accurately at lower frequencies, larger sample sizes are
required and the computation would become costly. The
result of the severe reduction in transmission for a wide
range of frequencies is remarkable and may be of relevance
to the fundamental problem of Anderson localization [20].
The results also imply that random arrays of rigid cylin-
ders are good candidates in filtering audible noise.
184301-4
In summary, here we have applied the multiple scatter-
ing theory to study the acoustic transmission through regu-
lar arrays of rigid cylinders, yielding favorable agreements
with experimental results. The theoretical results verify the
existence of the deaf bands. The results are subsequently
extended to the case of random cylinder arrays. We found
that wave propagation is significantly reduced by random-
ness for a wide range of frequencies.
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