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Selective Excitation of Localized Modes in Active Random Media
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Laser action in the regime of Anderson localization is investigated by coupling Maxwell’s equations
in a strongly scattering medium with the rate equations of a four-level atomic system. We find that the
localized modes of the passive medium are not modified by the presence of gain and serve as resonant
microcavities of the random laser. The spectrum of laser emission is shown to depend on the location
of the external pump. These results are similar to the recent experimental observations in semiconductor
powder [Cao et al., Phys. Rev. Lett. 82, 2278 (1999)]. We show that local pumping of the system allows
selective excitation of individual localized modes.
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After the pioneer work of Lethokov in 1968 [1], laser
action in mirrorless scattering media has recently received
considerable interest. If this active field of research is
motivated by the possibility of future applications [2], it
also raises fundamental interrogations. Among them, how
laser action depends on the strength of the disorder and, for
highly scattering media, how laser gain affects Anderson
localization are still open issues.

Anderson localization of waves, originally predicted in
the context of electronic transport [3] and extended later
to electromagnetic waves [4], is often described in terms
of transport properties. As a result of strong interferences
and multiple scattering, a wave packet may have a finite
probability of return to the same site, which results in a
vanishing diffusion coefficient in an infinite medium and
an exponential decay of transmission, characterized by the
average localization length, j. These transport proper-
ties directly originate from the confined structure of the
eigenmodes. The localized modes can be seen as complex
microcavities, described asymptotically by an exponential
decay of their envelope on a typical length j.

One interesting issue when considering single localized
eigenmodes of a specific realization of the disorder is the
possible role these microcavities could play in the presence
of gain. Numerical simulations of random active media
using a phenomenological description of the gain have
indeed suggested the principle of a “distributed feedback
random cavity laser,” where the localized modes of the
passive medium could serve as the feedback cavity of the
laser [5]. The first reports of laser action in random media
[6–8] showed, however, no evidence of resonant feedback
due to localized modes. The linewidth narrowing of the
emission spectrum was interpreted in terms of nonresonant
feedback of spontaneous emission amplified along open
scattering paths [9–12].

Only recently has laser action in random media with
resonant feedback been reported [13,14]. Cao et al. used
a semiconductor powder, which played simultaneously the
role of the random and the active medium. Above a certain
threshold, sharp peaks emerged in the emission spectrum.
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This behavior has been identified as a direct manifestation
of the resonant feedback process provided collectively by
the strongly scattering medium. Here, closed loop paths
formed by the scatterers serve as laser cavities. Because
these cavities can be spatially selected, different peaks ap-
peared for different locations of the pump excitation. If
evidence of strong scattering regime has been brought, pos-
sible connection with Anderson localization was merely
suggested [15]. Moreover, no complete theory of strong
localization for active random media is yet available. One
may wonder, for instance, whether the localized modes of
the passive random system are preserved or, on the con-
trary, to which extent they are modified by the gain. One
may even ask further if localization is enhanced or inhib-
ited in the presence of gain [16–18].

In this Letter, we examine the role of strong localization
in the lasing action process. We use a numerical model
which describes the full dynamics of the field and the lev-
els’ populations in two-dimensional (2D) active random
media. First, we select a window of modes strongly lo-
calized in the spectrum of the passive medium and exam-
ine the spatial and spectral characteristics of these modes.
Next, the passive modes are compared with the laser modes
when the gain is activated. One of the main results pre-
sented here is that the active medium is described by the
modes of the passive system. Aside from a small fre-
quency pulling effect due to the amplifying medium, the
laser frequencies coincide with the eigenfrequencies of
the passive system and the 2D spatial profile of the lo-
calized wave functions are remarkably well reproduced.
Neither enhancement nor destruction of strong localization
are observed. Next, we demonstrate how lasing frequency
control via the selective excitation of individual localized
modes can be achieved by local pumping of the system.

We consider a two-dimensional disordered medium of
size L2 made of circular scatterers with radius r, optical in-
dex n2, and surface filling fraction f, imbedded in a matrix
of index n1. This system is equivalent to a random array
of dielectric cylinders oriented along the z direction. The
matrix is chosen as the active part of the medium, in order
© 2001 The American Physical Society 183903-1
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to control the randomness and the gain independently. Fol-
lowing the conventional laser equations [19], we describe
the dynamics of atomic populations by rate equations of a
four level atomic system and the time evolution of the field
by Maxwell’s equations, including a polarization term
due to atomic population inversion. The corresponding
equations are identical to those laid out in [20] where key
aspects of the experimental observations of Cao et al. have
been successfully reproduced in one-dimensional systems.
Here, we consider the Ez, Hx , and Hy components of a
2D TM field. The FDTD (finite-difference time-domain)
method [21] has been used to solve the Maxwell’s equa-
tions. We use PML (perfectly matched layer) absorbing
boundary conditions [22] in order to model an open sys-
tem. A time step of 2.10217 s has been chosen to describe
the time evolution of the optical field (n21 � 10215 s).
Although atomic parameters of dye molecules have been
preferred for their relatively short emission lifetime
(1029 10210 s), the dynamic range of times spans 7
to 8 orders of magnitude. However, in the calculations
presented here, the stationary regimes are reached after
105 to 106 time steps, because of the relatively short decay
times of the modes of our systems (see below).

We first study the modes of the passive system (with-
out gain). We choose L � 5.5 mm, n1 � 1, n2 � 2, r �
60 nm, and f � 40% (see Fig. 4). The time response to
a short pulse is recorded and Fourier transformed to get
the power spectrum. Figure 1a shows two spectra corre-
sponding to the Fourier transform of the first and second
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FIG. 1. (a) Semilog representation of the power spectra corre-
sponding to the Fourier transform of the first (dotted line) and
second (full line) half of the time record of the field. (b) Semilog
representation of the power spectrum of the laser field at high
pumping rate (full line). The (rescaled) gain profile is repre-
sented in dotted line.
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half of the time record of the field. The two spectra are dif-
ferent because the system is open and supports only leaky
modes or “quasimodes” [23]. The most leaky modes ob-
served in the first spectrum are strongly attenuated in the
second spectrum where only modes with the longest life-
times still survive. We can excite these modes separately
by a monochromatic source at the eigenfrequencies mea-
sured in the spectrum, to characterize their spatial profile
and time evolution. Figures 2a and 2b show two examples
of eigenstates, called a and b, obtained following such a
resonant excitation. They correspond to l � 446.9 and
l � 445.0 nm in the spectrum of Fig. 1a. Besides their
complex geometries and random locations in the system,
these modes are characterized by a strong spatial localiza-
tion. A semilog plot would show an exponentially decay-
ing envelop. The measured characteristic decay length is
close to 0.5 mm, which is about ten times smaller than the
system size L � 5.5 mm. Accurate measurement of the
decay time of the modes gives t � 3.49 and 0.72 ps for
modes a and b, respectively, corresponding to a quality
factor n�dn equal to 14 700 and 3030, where dn is the
linewidth. Even for mode b, leakage is weak enough for
this mode to survive over times of the order of 10212 s. A
rough estimate of the mean level spacing Dn gives a Thou-
less number dn�Dn smaller than unity [24]. The localized
nature of the modes and their spectral properties confirm

FIG. 2. Spatial distribution of the field magnitude of (a) mode
a (l � 446.9 nm) and (b) mode b (l � 445.0 nm) of the pas-
sive system. Spatial representation of the magnitude of the laser
field just above threshold for extended (c) and spatially localized
(d) gain. Note that amplitudes in (a) and (c) or (b) and (d) are
not comparable since they have been scaled differently to use
the full color map. The circle represents the spatial extension at
s of the Gaussian pump.
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that the regime of Anderson localization has been reached
within the limited dimensions of the system.

In a second step, gain is introduced in the system by
pumping the four level atoms uniformly over the whole
system. The maximum of the gain curve is positioned
at l � 446.9 nm (at exact resonance frequency of mode
a). The small background field that is necessary to initi-
ate lasing action is provided by a low intensity broadband
seed pulse. Just above threshold, a stationary regime is
reached after a transient exponential growth of the field
amplitude. The corresponding map is displayed in Fig. 2c.
One recognizes the pattern of mode a of the passive system
(Fig. 2a). We deliberately chose to represent the amplitude
of the field rather than the intensity for a better display of
the tails of the modes. A more quantitative comparison of
the normalized intensities of the passive mode and the laser
mode (averaged over one thousand periods) reveals a maxi-
mum relative difference of 4.7% for local intensities of the
mode as low as 1% of its maximum value. The correspond-
ing spectrum (not shown) exhibits a unique peak at l �
446.9 nm. This result demonstrates clearly that the local-
ized mode is responsible for the frequency selection of the
random laser and that the introduction of gain in the disor-
dered system does not modify the structure of this mode.

At higher pump levels, the laser emission is multimode.
After a transient regime lasting a few picoseconds, the field
becomes stationary on average though exhibiting beats be-
tween several excited modes. The field map at a particular
time is shown in Fig. 3. One clearly recognizes a mixture
of patterns including the two modes a and b of Fig. 2. This
shows that the laser field corresponds to a superposition of
modes of the passive system. This result is confirmed by

FIG. 3. Spatial distribution of the magnitude of the laser field
at a given time, at high pumping rate. Corresponding spectrum
is shown in Fig. 1b.
183903-3
the spectrum of the laser field shown in Fig. 1b. The nar-
row peaks correspond to the eigenfrequencies of the pas-
sive system, aside from a small frequency pulling effect
(relative frequency shift less than 5 3 1024).

If mode a, which has the longest lifetime in the fre-
quency range considered, can be excited alone by adjust-
ing the pumping rate near threshold, other modes may also
be selected individually. One possibility would be to shift
the maximum of the gain curve close to another eigenfre-
quency of the passive system. Though realizable in numer-
ical calculations, the gain curve is fixed by the choice of
the active material and cannot be adjusted in actual experi-
ments. Another possibility, which is used for the selection
of individual modes of a classical laser, is to introduce an
etalon into the cavity. For obvious reasons, this method
is also not possible for a random laser. We show now
that it is possible to take advantage of the nature of the
localized modes to select them individually. For this pur-
pose the system is not pumped uniformly but locally. We
choose an external pump with a Gaussian spatial profile of
width of the order of j, s � 0.5 mm. Since the localized
modes have a complex geometry and have different loca-
tions in the system, the overlap of the gain with a given
localized mode can be maximized by adjusting the posi-
tion of the pump. By scanning the system with the pump,
we have been able to selectively excite each of the modes
corresponding to the highest peaks of Fig. 1a. Local exci-
tation of the system is illustrated in Fig. 4, which displays
the spatial distribution of the atomic population difference
DN between the upper and lower lasing levels, in the

FIG. 4. Gray scale representation of the spatial distribution of
the atomic population difference DN between the upper and
lower lasing levels for a local excitation of the system by a
Gaussian pump of width s � 0.5 mm. The white spots inside
the excited region indicate the gain saturation. The small circles
represent the scatterers.
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stationary regime. Population inversion at the position of
the external pump is seen. Saturation of the gain is also
observed, as revealed by the spots where DN is strongly
reduced inside the active region. This is the equivalent for
the random laser of the hole burning effect, well known
in conventional lasers [19,23]. Figure 2d shows the map
of the corresponding laser mode. One recognizes mode
b of the passive system (Fig. 2b). Although farther from
the maximum of the gain curve (l � 446.9 nm) and more
dissipative than mode a, this mode has been excited alone,
as confirmed by the single peak located at l � 445.0 nm
in the corresponding power spectrum (not shown). It is in-
teresting to note that the overlap of the pump profile and
the excited mode does not need to be perfect. In fact, it
is sufficient for the difference between the gain and the
losses to be maximum for this mode at the position of the
external pump. Thus, this example demonstrates that it is
possible to force the random laser to oscillate in a single
mode different from the most favorable one. As expected,
the pumping rate must be adjusted for each new position
of the pump in order to excite a single mode. In other
words, the local threshold for lasing depends on the posi-
tion of the pump. Finally, it is interesting to consider the
case where the external pump is located near the bound-
aries of the system. Since leakage is important, the modes
positioned at those locations are strongly damped. How-
ever, by using a high pumping rate, we have been able to
excite such modes. This shows that lasing action is not
limited to the best modes of the system. This result is rele-
vant for actual experiments since external pumping of a
strongly scattering system is likely to be more efficient at
its boundaries.

In conclusion, we have demonstrated numerically by
coupling the Maxwell’s equations in a disordered medium
with the rate equations of a four level atomic system that
the lasing modes are identical to the passive modes with-
out gain. When the external pump is focused, the lasing
modes change with the location of the pump. This result is
in agreement with experimental observations reported by
Cao et al. [13]. By properly adjusting the pumping rate,
it is possible to excite individually different modes of the
passive system. These results show that introducing gain
could help to study wave propagation in strongly scatter-
ing systems. An interesting question would be to know,
for instance, if the introduction of gain would make it pos-
sible to discriminate between the diffusive and localized
regimes, which remains a challenge in actual experiments.
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