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Focusing versus Defocusing Nonlinearities due to Parametric Wave Mixing
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We show experimentally and theoretically that cascading due to two-wave parametric frequency con-
version in quadratic materials acts as an effective focusing or defocusing nonlinearity, depending not only
on mismatch, but also on the selected wave, and the dominant type of process (second-harmonic genera-
tion or down-conversion). A dramatic asymmetry of beam spreading and threshold lowering for soliton
formation against mismatch is the clear experimental signature of this behavior.
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Self-trapped (nondiffractive) wave packets or solitons
are the most striking manifestation of self-focusing occur-
ring in Kerr media with positive nonlinear index [1]. How-
ever, also second-harmonic generation (SHG) with large
phase mismatches Dk � 2k1 k2, results in an effective
self-induced Kerr effect for the fundamental harmonic
(FH) beam, i.e., an intensity-dependent index change
which is of self-focusing type for Dk . 0 [2,3]. This
so-called cascading effect, due to reiterated up- and down-
conversions, is a universal x �2� phenomenon occurring
also via other mixing processes [3,4]. A renewed interest
in cascading has motivated the pioneering observation of
parametric solitons in SHG [5], which, unlike solitons
in true Kerr media, do not undergo catastrophic blowup
in 2 1 1 dimensions [6]. The field of x�2� trapping was
then enriched by observations of spatial locking in optical
parametric amplification (OPA, i.e., down-conversion) of
quantum noise [7] or finite seed [8], transverse instabilities
[9] and temporal effects [10] in SHG, and Bessel-like or
vortex beams in SHG and OPA [11,12]. Theoretically,
parametric solitons have also stimulated a deep under-
standing of soliton stability with fallout in the whole area
of nonlinear waves [13].

The studies of quadratic wave mixing of confined wave
packets have been carried out by taking for granted that
large positive Dk results into self-focusing of parametri-
cally generated light. The aim of this Letter is to show
experimentally and theoretically that this is not generally
true. Vice versa the outcome of the quadratic wave mixing
depends critically on the dominant process (SHG vs OPA)
through the launching conditions, and also on which beam
is considered. Experimentally, we choose solitons as natu-
ral candidates to show the diversity existing between SHG
and OPA, for which we present compelling evidence for
asymmetric lowering of formation threshold. Conversely,
to show the different behavior of the two beams we need a
significant departure from solitons. A comprehensive clas-
sification of the observed focusing/defocusing features is
given by means of a novel reduced model.
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We have investigated experimentally focusing and soli-
ton formation in SHG and OPA, by means of a laser source
delivering 1.5-ps pulses (measured by autocorrelation).
SHG is pumped by a beam at l0 � 2p�k0 � 1055 nm,
while in OPA a seed at l0 is amplified by a SH pump
beam at l0�2 � 527.5 nm. A 3-cm-long LBO (lithium
triborate) crystal was chosen in spite of its relatively
low nonlinear coefficient deff � 0.85 pm�V (x �

k0

q
2��ce0n2

1n2� deff � 7 3 1025 W21�2 with n1 �
n2 � 1.6), because of (i) low (virtually zero) two-photon
absorption at 527.5 nm; (ii) absence of walk-off due to
type I temperature-tuned noncritical phase matching. The
measured phase matching temperature, corresponding to
peak SHG conversion for a wide FH beam was 159 ±C. A
nearly Gaussian input pump beam with FWHM diameter
of 45 mm was focused on the input face of the crystal,
and its energy was measured by a calibrated energy meter.
The output beam was imaged onto a CCD camera, where
the beam profiles and diameters at both FH and SH are
measured by means of suitable filters. Under low power
operating conditions, we measure a diffracted output
FWHM diameter d � 150 200 mm.

First, soliton formation is observed at a well-definite
pump input energy threshold ET , above which the beam
widths of both harmonics are locked to a fixed value and
do not exhibit appreciable changes in response to large
variations of input energy (see also Ref. [5]). The thresh-
old measured in SHG is reported in Fig. 1. It decreases
abruptly when crossing from the self-defocusing (Dk , 0)
to the self-focusing (Dk . 0) side. Although in the latter
region the threshold depends smoothly on Dk, the output
imbalance (FH to SH energy ratio) at threshold increases
considerably with Dk, as shown in Fig. 2.

For comparison, we have measured (see Fig. 3) the
soliton threshold in OPA with (fixed) 8 nJ FH seed. In
this case, the measurements are limited to a smaller range
of jDkj by the onset of competing OPA of quantum
noise occurring, for high pumping rates, at different
signal-idler (spontaneously phase matched) wavelengths.
© 2001 The American Physical Society 183902-1
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FIG. 1. Threshold energy for soliton formation against mis-
match Dk in a SHG experiment. The solid circles are measured
data, while stars are relative to the peak intensity calculated nu-
merically from Eqs. (1) within a CW approximation.

Nevertheless, by comparing Figs. 1 and 3, it is clear that
OPA shows the opposite trend. The higher threshold
measured in OPA for Dk . 0 suggests that the effective
nonlinearity is of defocusing (focusing) type for Dk . 0
�Dk , 0�, unlike the case of SHG. However, in this case
this focusing/defocusing action must be expected to stem
from the SH beam which dominates the OPA dynamics.

To check further the focusing versus defocusing nature
of the effective nonlinear lensing effect, we have per-
formed a second set of measurements in SHG from an
input FH beam with fixed diameter (d � 44 mm) and in-
put energy corresponding to the formation of a paramet-
ric soliton near phase matching (about 1 mJ, see Fig. 1).
Then, the output beam diameters of the FH and SH beams
are recorded against mismatch Dk and shown in Fig. 4,
in a range of about 100 cm21 corresponding to tempera-
tures 110 200 ±C. For large absolute mismatches (say

FIG. 2. FH to SH soliton energy ratio versus Dk in SHG.
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FIG. 3. As in Fig. 1 for an OPA experiment.

jDkj . 40 cm21), diffraction of the FH beam strongly
dominates over SHG, and the two beam diameters ap-
proach the linear limit, reported as a dashed line in Fig. 4.
Here, unlike the previous set of measurements, we do
not readjust the input energy to form a soliton when the
absolute mismatch is changed. Thus, for intermediate
mismatches, the nonlinearity does not balance completely
diffraction, and the beams experience significant width
variations. Remarkably, the two beams exhibit a strongly
asymmetric behavior against reversal of mismatch. For
Dk , 0 the FH beam spreads well above the linear limit
following the well-established defocusing nature of the ef-
fective nonlinearity. Conversely, for Dk . 0, it is the SH
beam which experiences a significant spread above the lin-
ear limit, confirming that the SH beam follows an opposite
trend with respect to the FH beam, even in SHG. The
data of Fig. 4 are, to the best of our knowledge, the only

FIG. 4. Output beam FWHM diameters d of the FH and SH
beams measured versus mismatch Dk in a SHG experiment
with fixed input energy and beam diameter. The dashed line
represents the linear limit of diffractive spreading.
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compelling evidence that cascading is a subtle limit, with
opposite features for the two harmonics.

The observed features can be explained starting from
the standard Hamiltonian coupled-mode model [13], con-
veniently written in terms of dimensionless variables as
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where z � Z�Zd , �x, y� � �X, Y ��r0 (r �
p

x2 1 y2 is
the radial coordinate, and =

2
� � ≠2

x 1 ≠2
y the transverse

Laplacian), r0 and Zd � k1r2
0 being a reference input

spot-size and diffraction length, respectively. un�x, y, z� �p
3 2 n ZdxEn�X, Y , Z�, n � 1, 2, are slowly varying

envelopes, with jEnj
2 being real-world intensities. Here

dk � DkZd � 2k0Zd�n1 2 n2� is the normalized mis-
match, while sn � k1�kn, i.e., s1 � 1 and s2 � 1

2 .
We have dealt with Eqs. (1) following three different

approaches, all of them accounting for the observed fea-
tures. First, we have resorted to numerical integration of
Eqs. (1). For any value of Dk, the threshold is determined
numerically by doing several simulations at different in-
put intensities. The stars in Figs. 1–3 correspond to the
values of threshold and imbalance estimated numerically
(the computed threshold is CW and thus reported on a dif-
ferent vertical scale in GW�cm2). The agreement is sat-
isfactory, although a more quantitative comparison would
require accounting for temporal effects (i.e., pulse break-
ing, group-delay, …), not included in Eqs. (1).

To establish further the asymmetric behavior of mix-
ing, the entire family of radially symmetric nodeless soli-
ton solutions un � un0�r� exp�inbz� of Eqs. (1) [14], was
mapped numerically in the plane �dk,b�. Solitons exist for
any propagation constant b . 0 when dk . 0, and only
for b . 2dk�2 when dk , 0, becoming infinitely wide
close to this existence threshold. To our purpose, the soli-
ton family is conveniently characterized in terms of power
imbalance Q2�Q1 (or Q1�Q2), where Qn � Qn�b, dk� �R R1`

2` jun0j
2��3 2 n� dx dy gives the parametric depen-

dence of the FH �n � 1� and SH �n � 2� powers. Experi-
mentally, one does not have direct control on b, but rather
on the (related) total power Q � Q�b, dk� � Q1 1 Q2

which is conserved along z (together with the Hamilton-
ian) [13]. The curves showing the dependence of power
imbalance Q2�Q1 on accessible quantities, i.e., against dk
for different constant powers Q, are reported in Fig. 5, and
agree with the observed features. First, strongly asymmet-
ric behavior around dk � 0 is clearly evident. The FH
and SH components are comparable only at phase match-
ing, whereas the SH content remains weak for dk . 0 and
is markedly enhanced for dk , 0 (vice versa for the FH
component). Since soliton formation is obviously favored
by launching conditions which better match the soliton
183902-3
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FIG. 5. Ratio Q2�Q1 of SH to FH power components versus
mismatch dk, for different values of the total soliton power
Q � Q1 1 Q2. Unstable soliton branches are plotted as bold
curves. The inset shows an enlarged picture of the inverse ratio
Q1�Q2 for positive dk.

content, this explains why solitons are favored for dk . 0
in SHG (see Fig. 1), and for dk , 0 in OPA (see Fig. 3).
A second subtle point is the strong asymmetry between
the regions of large negative and positive mismatches dk.
For dk . 0, Fig. 5 shows that, at constant power, the
relative FH content of the soliton raises smoothly (and
indefinitely) with dk, in agreement with the quasilinear
increase exhibited by SHG data in Fig. 2. Conversely, for
dk , 0, Q2�Q1 increases abruptly where, however, soli-
tons become unstable (dQ�db , 0 [13], shown as bold
branches of the multivalued curves in Fig. 5) thus being
unobservable. Despite the instability affects only a tiny
region of the plane �b, dk� close to the existence bound-
ary [13], our accurate calculation shows that solitons ex-
hibit a strong enhancement of SH content exactly within
this region. In other words, the parametric soliton instabil-
ity is the counterpart of the well-known plane-wave decay
instability of the SH beam. In this respect, our available
data, showing that the SH to FH ratio measured in OPA
(not reported) never reaches the high values of SHG im-
balance (FH to SH ratio in Fig. 2), support only qualita-
tively this picture. Conclusive statements on this specific
point require overcoming the limitation on the achievable
Dk range in OPA, and account for intrinsic Kerr terms.

Last but not least, the essential focusing/defocusing
role of cascading nolinearities can be captured from a
multiscale reduction [15] of Eqs. (1), taking ´ � dk21 as
smallness parameter. To this end, the two interacting fields,
assumed to depend on both the fast longitudinal scale
z � z�´, and slow scales zn � ´nz, xn � ´nx, yn �
´ny, (n � 0, 1, 2, . . .), are expanded as u1 � A 1 ´A1 1

´2A2 1 . . . , and u2 � B 1 ´B1 1 ´2B2 1 . . . , without
any assumption on their relative magnitude. By pro-
ceeding in a standard way [15] (details will be published
elsewhere), we obtain in terms of original variables, the
183902-3
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reduced system obeyed by the leading-order envelopes A
and B as
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(2)

Although Eqs. (2) do not account for the parametric
energy conversion since they conserve the individual
beam powers, they describe correctly the large-scale
dynamics (averaged over many periods of conversion and
back-conversion) for large jdkj, thus generalizing the
self-consistent nonlinear Schrödinger equation (NLSE)
description of cascading. As compared with previous mul-
tiscale derivations [16], self-action at SH does not appear,
since it involves coupling to higher harmonics for which no
experimental evidence was ever reported. The form of the
effective cubic terms in Eqs. (2) is similar to those found
for quasi-phase-matching gratings [17] (where, however,
they act as a correction to grating-induced phase-matched
quadratic terms), thus suggesting their universal role for
parametric mixing of mismatched waves. Importantly,
the global lensing effect arising from phase curvature
in Eqs. (2) is affected by both self-induced (at FH) and
cross-induced terms which compete and act oppositely for
a fixed dk. This explains the observed physics at a glance.
First, in SHG (jAj ¿ jBj� the two harmonics experience
defocusing action for opposite signs of dk, in agreement
with the data reported in Fig. 4. Second, lower threshold
is expected where the effective nonlinearity dictated by
the dominant beam, i.e., FH in SHG and SH in OPA
�jBj ¿ jAj�, has self-focusing nature thereby balancing
diffraction. According to Eqs. (2), in agreement with
Figs. 1 and 3, this occurs for dk . 0 in SHG, and for
dk , 0 in OPA, respectively. In the focusing regions of
SHG and OPA, the inverse dependence of the effective
Kerr coefficients on dk in Eqs. (2) accounts for the slight
increase of threshold with mismatch. More importantly,
Eqs. (2) in combination with Fig. 5 shows physically
that solitons are allowed to exist for dk , 0 because
the dominant SH component experiences a self-focusing
action. In other words, contrary to common belief, both
signs of dk must be regarded as self-focusing as long as
the prevailing soliton component is considered.

Finally, note that our reduced model is consistent with
the well-known NLSE limit, which is obtained from
Eqs. (2) with B � 0. In this case, an axially symmetric
self-trapped FH beam u1 � A�r� is accompanied by a
stabilizing SH field which, in our approach arise at order
´ as u2 � ´B1 � �A2�2dk�exp�idkz�. These soliton
solutions approximate the exact ones of Fig. 5 only for
dk ¿ 1. Importantly, in OPA a singular self-consistent
183902-4
equation for a single beam amplitude cannot be derived,
even for large Dk. This is due to the fact that the FH beam
is weak, and the beam dynamics remains determined by
the cross-induced origin of nonlinear phase curvature in
Eqs. (2).

In summary, the concept of self-focusing (defocusing)
originating from parametric conversion depends not only
on the mismatch sign, but also upon the selected wave and
the dominant process (SHG or OPA). The physics of this
phenomenon is inherently contained in the usual coupled-
mode model for two-wave mixing. Striking asymmetries
between soliton thresholds and evolutions of nonsoliton
beam diameters confirm this picture.
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