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We show that quantum systems with broken symmetry can be selectively excited due to the coexis-
tence of one- and two-photon transitions between the same states. Discrimination between two mirror-
symmetric quantum wells or left- and right-handed chiral molecules can be accomplished by a “cyclic
population transfer” process, in which one optically couples three system states j1� $ j2� $ j3� $ j1�,
and completely transfers population from state j1� to state j2� and j3�M (i.e., state j3� of the mirror imaged
system) or state j3� and j2�M , depending on the laser phases.
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Adiabatic passage phenomena [1] are known to cause
complete population transfers between quantum states. In
the particular realization of adiabatic passage (AP), called
stimulated rapid adiabatic passage (STIRAP) [2,3], popu-
lation in state j1� can be transferred to state j3�, by a “coun-
terintuitive” sequence of two one-photon transitions using
an intermediate state j2�. The method has been applied to
atomic and molecular systems [2,3], as well as to quantum
dots [4].

Ordinary STIRAP is sensitive only to the energy lev-
els and the magnitudes of transition-dipole coupling ma-
trix elements between them. These quantities are identical
for a chiral system and its mirror image (such pairs are
called “enantiomers” [5]). Its insensitivity to the phase of
the transition-dipole matrix elements renders STIRAP, and
ordinary weak-field absorption [6], incapable of selecting
between enantiomers. Recently [7], we have shown, how-
ever, that this objective can be realized by other (phase
sensitive) optical processes in the weak-field regime.

In this Letter, we demonstrate that precisely the lack
of inversion center, which characterizes chiral and other
broken-symmetry systems, allows us to combine the weak-
field one- and two-photon method [8–11] with the strong-
field STIRAP, to render a phase-sensitive AP method.
In this “cyclic population transfer” method (CPT), one
closes the STIRAP two-photon process j1� $ j2� $ j3�
by a one-photon process j1� $ j3�. One-photon and two-
photon processes cannot coexist in the presence of an
inversion center, where all states have a well-defined par-
ity, because a one-photon absorption (emission) between
nondegenerate states j1� and j3�, requires that these states
have opposite parities, whereas a two-photon process re-
quires that these states have the same parity.

Contrary to systems possessing an inversion center, in
which the interference between weak-field one- and two-
photon processes in a continuum leads to a phase control of
differential properties, e.g., current directionality [8–11],
we show that the CPT process of broken symmetry sys-
tems allows us to control integral properties as well. A
prime example is the control of the complete population,
transferred to excited states of two enantiomers.
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Specific examples for the use of CPT are illustrated in
Fig. 1 (upper plot). One example deals with a pair of
asymmetric quantum wells, one being the mirror image of
the other. Another example consists of two heteronuclear
molecules aligned in an external dc electric field [12], to
break their rotational symmetry, or a mixture of left- and
right-handed enantiomeric molecules [7].

In the setup of Fig. 1 (lower plot), we consider operating
on states ji� and their mirror images ji�M by three pulses
in a “counterintuitive” order [2,3], i.e., two “pump” pulses
with Rabi frequencies V12�t� and V13�t�, which follow a
“dump” pulse V23�t�. The Rabi frequencies are defined
as Vij�t� � mijEij�t��h̄ � jVij�t�jeifij � V

�
ji�t�, where

mij and Eij�t� are, respectively, the transition dipoles
and the envelopes of electric fields, of central frequen-
cies vij, operating between states i fi j �i, j � 1, 2, 3�. If
we symmetrically detune the pulse center frequencies, as

FIG. 1. (Upper plot) An asymmetric quantum well and its mir-
ror image. Also shown are two field-oriented heteronuclear
molecules. (Lower plot) Illustration of the three pulses used
in these CPT systems. The two systems can be discriminated
by their different matter-radiation phases w.
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shown in Fig. 1, we satisfy the j1� $ j2� $ j3� and j1� $
j3� $ j2� two-photon resonance condition, while keeping
the one-photon processes, j1� $ j3� and j1� $ j2�, off
resonance. As a result, the loop formed by the three tran-
sitions is not resonantly closed. Therefore, the one and
two-photon processes interfere only at isolated points in
time, when the pulses are on.

We now solve explicitly the problem by first writing
the CPT (radiation 1 matter) Hamiltonian in the rotating
wave approximation as

H �
3X

j�1

vjjj� �jj 1

3X
i.j�1

�Vij�t�e2ivij t ji� �jj 1 H.c.� ,

where vj are the energies of the states jj�, and atomic units
�h̄ � 1� are used throughout. The system wave function
can be written as

jc�t�� �
3X

n�1

cn�t�e2ivnt jn� , (1)

where c � �c1, c2, c3�T, the column vector of the slow
varying coefficients, can be evaluated from the Schrö-
dinger equation

�c�t� � 2iH�t� ? c�t� (2)

with H�t�, the effective Hamiltonian matrix, given as

H �

2
64

0 V
�
12eiD12t V

�
13eiD13t

V12e2iD12t 0 V
�
23eiD23t

V13e2iD13t V
�
23eiD23t 0

3
75 . (3)

Here we have omitted, for brevity, writing explicitly the
time dependence of Vij�t�, and the detunings are defined
as Dij � vi 2 vj 1 vij � 2Dji .

In contrast to ordinary STIRAP, unless S � D12 1

D23 1 D31 � 0, it is not possible to transform away
the rapidly oscillating e2iDij t components from the CPT
Hamiltonian [Eq. (3)]. Therefore, the system phase factor
varies as �e2iSt� during the time when the three pulses
overlap. As a result, in CPT, unless S � 0, null states
(i.e., states with zero eigenvalue) disappear when the
pulses overlap. Moreover, due to nonadiabatic couplings,
the population does not follow a single eigenstate during
the entire time evolution, migrating at the near-crossing
region from the initially occupied null state.

We can quantify the above statements by examining the
eigenvalues of the Hamiltonian of Eq. (3), given as

E2 �
21�3a

3c
1

c
321�3 ,

E1,3 �
2�1 6 i

p
3 �a

322�3c
2

�1 7 i
p

3 �c
621�3 ,

(4)

where

a � 3�jV12j
2 1 jV23j

2 1 jV31j
2� ,

b � 33 Det�H� � 332 ReO ,

and
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c � �b 1
p

b2 1 4�2a�3 �1�3,

with O � V12V23V31e2iSt.
We see that the three eigenvalues depend only on the

overall phase of O . This phase is composed of a time-
independent part w � f12 1 f23 1 f31, of the product
of the Rabi frequencies, and a time-dependent part St.
Therefore, from Eq. (4), it follows that if w � 6p�2 and
S � 0, we have b � 0, hence, c � i21�3a1�2 and E2 � 0.

In Fig. 2 we present the time dependence of the
eigenvalues Ei�t� �i � 1, 2, 3� for three Gaussian
pulses parametrized as jV23�t�j � Vmax exp�2t2�t2�,
jV12�t�j � 0.7Vmax exp�2�t 2 t2�2�t2�, and jV13�t�j �
0.7Vmax exp�2�t 2 t3�2�t2�, with Vmax � 30�t, where
t is the pulse width. The pulse delays are t3 � t2 � 2t

and the detunings, chosen to give maximal selectivity, are
D12 � 2D13 � 2D23 � 0.08�t. The eigenvalues are
presented for the phases w � 0.235p (see Fig. 4) and
w � �0.235 2 0.5�p.

For the problem defined by the parameters of Fig. 2,
�jc1j, jc2j, jc3j�, the vector of magnitudes of the expan-
sion coefficients of the jEi� eigenvectors in the “bare”
basis, starts in the remote past �t ! 2`� as �1, 0, 0� for
jE2�, and as �0, 1, 1��

p
2 for jE1� and jE3�. Since the

evolution starts with bare state j1�, only the jE2� eigen-
state gets initially populated. At the end of the process,
we have that �jc1j, jc2j, jc3j�

t!`
! �0, 1, 1��

p
2 for jE2�, and

t!`
! �

p
2, 1, 1��2 for jE1�, jE3�.

Figure 2 clearly shows that the system evolution is
governed by the interference between j1� ! j3� ! j2�
and j1� ! j2� ! j3� two-photon processes, which are
arranged in Fig. 1 with a “clockwise” and “counterclock-
wise” sequence of involved levels. This interference

FIG. 2. The three dressed eigenvalues Ei �t� at two dif-
ferent phases. The solution for w � 0.235p and w �
�0.235 1 0.5�p is plotted by thick and thin lines, respectively.
An initial population at state j1� stays on the null state jE2�t��
with E2�t� 	 0 up to the avoided crossing region where the
population becomes shared with the eigenstate jE1�t�� or
jE3�t��, depending on the phase w. The horizontal short lines
denote the approximate times of action of the Rabi frequen-
cies Vij .
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FIG. 3. The populations, given as Si �t� � j�Ei�t�jc�t��j2, of
the field-dressed states, given that jc�t � 0�� � j1� and w �
0.235p . All other parameters are as in Fig. 2. The thin vertical
�— ? — ? — ?� line points at the time after which the population
in the bare states ji� roughly cease to vary.

results in the appearance of an avoided crossing between
the E2�t� eigenvalue and (depending on the phase w)
either the E1�t� or the E3�t� eigenvalue. In the crossing
region, the adiabatic description ceases to be valid, and the
system populates a superposition state a2jE2� 1 ai jEi�
(i � 1 or i � 3).

Figure 3 displays the evolution of the populations
Si�t� � j�Ei�t�jc�t��j2 of the field-dressed states, having
started with jc�t � 0�� � j1�. The parameters are as in
Fig. 2, with w being confined to the 0.235p value. We
see that the eigenstate jE2� is populated exclusively until
the avoided crossing region, where the system goes to
the state a2jE2� 1 a1jE1�. As the pulses wane and all
Vij�t� ! 0, nonadiabatic processes populate also the
jE3� state. The populations of the jE1� and jE3� states have
roughly the same magnitudes S1 	 S3 at the end of the
process, as expected from the roughly equal final values
of the jc1j, jc2j, jc3j coefficients shown above. Hence, by
varying w and S we can adjust the ai coefficients such
that

P
i ai jEi�

t!`
! j2� or j3�.

An example of the degree of control attainable in this
manner is given in Fig. 4, where we display the phase
dependence of the final populations pi of the bare states
ji�, using the parameters of Figs. 2–3. The main feature
of Fig. 4 is that the role of state j2� vs state j3� is reversed
as we translate the phase w by p. This feature serves, as
discussed below, to establish the discrimination between
left-handed and right-handed chiral system.

The calculations of Fig. 4 show enhanced sensitivity of
the final populations pi on w at small detunings Dij . The
population transfer can be made essentially complete by
choosing w 	 0.235p (denoted by a small arrow at the
bottom of Fig. 4). In that case, 99% of the population
is transferred from state j1� to state j3�. As the phase w

is shifted by p, the system switches over, with the same
efficiency, to the j1� ! j2� population transfer process.
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FIG. 4. Dependence of pi , the final populations of the bare
states ji� on the phase w. The two vertical arrows show the
phases for the best separation of the chiral systems, where the
population is transferred from state j1� to states j2� or j3�.

A complementary view of the dynamics is provided
by examining the two Bloch vectors with components
�jc1j

2 2 jcij
2, Re�c�

1ci�, Im�c�
1ci �� �i � 2, 3�, shown in

Fig. 5. Starting from the initial position of �1, 0, 0�, both
vectors leave the avoided-crossing region in a super-
position state a2jE2� 1 a1jE1�, where they oscillate with
the Rabi frequency jV12j � jV13j. The final populations
pi of the bare states ji� are determined by the second
mixing of the jEi� states, during the waning of the pulses.
This nonadiabatic process reduces the population to the
approximate final state j3�, so the two Bloch vectors end
in the positions �21, 0, 0� and �0, 0, 0�.

The phase dependence of CPT can be used to dis-
criminate between left- and right-handed chiral systems.
Denoting by ji1� (formerly ji�) a given symmetry-broken
state and by ji2� (formerly ji�M) its mirror image, we
can write these states in terms of symmetric jSi� and
antisymmetric jAi� states of the two systems as [5,7],
ji6� � sijSi� 6 ai jAi�. Because dipole moments can
only connect states of opposite parity, we obtain that
the Rabi frequencies for transition between different
symmetry-broken states ji6� and jj6� are given as
V

6
ij � 6�s�

i aj�SijmjAj� 1 a�
i sj�AijmjSj��Eij . We see

that the Rabi frequencies between any pair of left- and
right-handed states differ by a sign, i.e., a phase factor of
p. Since in the CPT processes the two enantiomers are
influenced by the phase w6 of the products V

6
12V

6
23V

6
31,

we always have that w2 2 w1 � p. This property is
invariant to any arbitrary phase change in the individual
wave functions of the states ji6�.

It therefore follows from Fig. 4, where a change in p

of the phase w is seen to switch the population-transfer
process from j1� ! j2� to j1� ! j3�, and vice versa, that
we can affect the transfer of population in one chiral sys-
tem relative to its mirror image. Because the overall
material phase w6

s of the product of the dipole matrix
elements m

6
12m

6
23m

6
31 is a fixed quantity �w2

s 2 w1
s � p�,
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FIG. 5. The Bloch vector �jc1j
2 2 jcij

2, Re�c�
1ci�, Im�c�

1ci ��
evolution, where i � 3 and i � 2 holds for the top and bottom
plot, respectively. Population starting in the initial state j1� is
clearly transferred to the final state j3�.

and w6 � w6
s 1 wf , it is the overall phase wf of the three

laser fields Eij which acts as the laboratory knob allow-
ing us to determines which population-transfer process is
experienced by each of the two enantiomers.

The ability of CPT to separate two enantiomers also
depends on the individual detuning parameters Dij and on
the related dynamical phase 2St. At resonance Dij � 0
and w � 6p�2, the exact null eigenstate jE2�t�� gives a
complete adiabatic population transfer from state j1� to a
combination of states j2� and j3�. In that case, the p2�p3
branching ratio of the final populations is given, as in the
double STIRAP case [14,15], by the jV12�V13j

2 ratio and
no enantiomeric selectivity is then possible. In general,
the strong-field excitation of enantiomers can be achieved
only in nonadiabatic CPT regimes.

Once each enantiomer has been excited to a different
state (j2� or j3�), the pair can be physically separated using
a variety of energy-dependent processes, such as ioniza-
tion, followed by ions extraction by an electric field. If
we execute the CPT excitation in the IR range and ionize
the chosen enantiomer after only a few nsec delay, losses
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from fluorescence, whose typical lifetimes are in the msec
range, are expected to be minimal.

In summary, we have shown that cyclic population trans-
fer (CPT) in a three level system �j1�, j2�, j3�� can discrimi-
nate between two molecules or two nanosystems lacking a
center of inversion. This phase-sensitive scheme is based
on the coexistence of one- and two-photon processes op-
erating between the same initial and final states, leading
to interferences between the j1� ! j3� ! j2�, “clockwise”
and the j1� ! j2� ! j3�, “counterclockwise” optical pro-
cesses. The interference, which depends on the (laboratory
controlled) overall phase of the three laser fields involved,
results in a selective excitation of one asymmetric system
relative to its mirror image. Following such a selective
excitation, a number of simple, energetically dependent,
physical separation schemes, such as ionization, followed
by ions extraction by an electric field, can be employed.
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