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Electron-Spin Precession in a Plane Electromagnetic Wave
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It is shown that a departure of phase velocity yph of a circularly polarized plane electromagnetic wave
from the speed of light c gives rise to the new effect of electron-spin precession in this wave exceeding
by several orders of magnitude the known effects caused by radiative corrections. This effect reveals a
property of the electron interaction with a polarized electromagnetic wave which is consistent with the
symmetry considerations, however, it vanishes at yph � c and is not described by the solution of the
Dirac equation obtained by Volkov.
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Introduction.—The electron behavior in the field of
a plane electromagnetic wave is described by the Dirac
equation solution obtained by Volkov [1,2]. The phase
of Volkov’s solution does not depend on an electron-spin
direction. As a consequence, the electron states with
opposite spin projections on the wave vector k have the
same (quasi)energy and momentum. Such a degeneracy
of the electron-spin states predetermines the absence of
the electron-spin precession about the vector k of a
circularly (elliptically in the general case) polarized
electromagnetic wave.

Meanwhile this degeneracy looks unnatural from the
symmetry point of view. Indeed, let j2 be the Stokes pa-
rameter, characterizing the degree of wave circular polar-
ization, and S be the spin of some quantum object. The
combination j2�kS� is a true scalar which can enter the
scattering amplitude and effective potential of the quan-
tum object interaction with the wave. In particular, this
combination describes the splitting of atomic energy lev-
els in the field of a circularly polarized electromagnetic
wave (CPW) [3].

The absence of the similar splitting in the case of
the electron can be explained only by an “accidental”
compensation of, in fact, very large contributions of CPW
magnetic and electric fields to the energy splitting of
electron-spin states and electron-spin precession fre-
quency. This accidental compensation takes place, first,
for a “Dirac’s electron” (an electron with magnetic
moment equal to the Bohr magneton m0 � jejh̄�2mc)
and, second, if the amplitudes of the CPW electric and
magnetic fields are equal.

If any of these two conditions is violated, the electron-
spin precession about the vector k has to arise. Indeed,
radiative corrections [4,5] give rise to the electron-spin
precession by means of violation of the first condition of
Dirac’s electron. The effect caused by the radiative cor-
rections is, naturally, limited in value.

The second condition of equality of the magnetic and
electric field amplitudes is automatically satisfied for a
plane CPW propagating in vacuum. However, it can be
easily violated by changing the CPW phase velocity yph
using some medium or waveguide structure. We will show
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that a departure of yph from c gives rise to a much more
pronounced effect of electron-spin precession than that
caused by the radiative corrections [4,5].

Semiclassical picture of the electron-spin evolution in
CPW.— Let us proceed from the equation (we use the sys-
tem of units in which h̄ � c � 1)

da
dt

�
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´
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of the evolution of the spatial part a of the 4-vector of
spin [1]. Here H and E are magnetic and electric field
strengths; m, ´, m � m0 1 m0 � e�2m, and m0 are the
electron mass, energy, total, and anomalous magnetic mo-
menta, respectively. Since we discuss the effect which
has nothing in common with radiative corrections, we will
completely neglect m0, using the right-hand side of Eq. (1).

We are going to analyze the electron-spin evolution in
the field of the electromagnetic wave with phase velocity
yph fi c. Such a wave can propagate in refracting medium
�yph , c� or plasma �yph . c� as well as in vacuum inside
a hollow �yph . c� or dielectric-lined �yph , c� cylindri-
cal waveguide. We will assume in the last case that the
electron beam is thin and propagates along the axis of the
waveguide. The interaction of such a beam with the wave
does not differ considerably from that with a plane wave
having yph fi c.

Thus, to illustrate the idea, we can consider the electron
interaction with a plane CPW having yph fi c. Let us
direct a Cartesian z axis along the vector k and describe
the plane CPW by the transverse 3-dimensional vector
potential

A � A0�nx cosvh 1 j2ny sinvh� ,

h � t 2 nz ,
(2)

where the Stokes parameter j2 � 61 determines the CPW
polarization (left and right, respectively), t is time, A0 is
the amplitude of the 3-dimensional vector potential (2), v

is classical �v ø m� frequency, and w � vh is the phase
of the CPW. The ratio
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n � k�v � c�yph , (3)

which, in a sense, generalizes the notion of refraction in-
dex to the waveguide case, will be widely used below to
characterize the departure of yph from c both in media and
waveguides. We assume that this departure can be compa-
rable with c. Note also that the amplitudes H0 � kA0 and
E0 � vA0 of the magnetic and electric fields of the CPW
differ at n fi 1.

Since in most cases the CPW field strength is limited
by the breakdown considerations we assume that the am-
plitude of the 3-dimensional vector potential (2) obeys the
restriction

eA0 ø m , (4)

making our consideration more transparent. To simplify
it further let us pass to the reference system in which
the electron is at rest before it gets into the CPW. The
Hamilton-Jacobi method [6] allows one to evaluate the
energy and the momentum,

´ � m 1
e2A2

0

2m
, p � 2eA 1 nz

e2A2
0

2m
, (5)

which an electron acquires in the field of CPW with the
amplitude adiabatically increasing from zero up to some
constant value A0.

Equations (5) determine the electron velocity v � p�´

allowing one to evaluate the electron-spin evolution using
Eq. (1). Both electric and magnetic fields should be taken
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at the electron location point z � yzt in Eq. (1). Since
the longitudinal electron velocity yz � pz�´ is constant
at A0 � const, the CPW frequency

v0 � v 2 kyz � v�1 2 nyz�

� v

∑
1 2

1
2

µ
neA0

m

∂2∏
� v (6)

measured at the electron location point is constant as well.
Since, according to Eq. (4), yz � �eA0�m�2�2 ø 1, the
frequency v0 and variable h � v0t are very close, respec-
tively, to the CPW frequency v and time t in the laboratory
system. Since v0 � v, the resonance effects which mani-
fest themselves when the Cherenkov condition v0 � 0 is
satisfied will not be important in our consideration.

More important is the fact that the CPW phase at the
electron location point

w � vh � v0t (7)

is linear in time when A0 is constant. Equation (7) makes
it possible to simplify Eq. (1) by passing to the reference
system rotating about the vector k � knz with the angular
velocity j2v0 (compare with Ref. [7]). Equation (1) takes
the form of the system of three differential equations with
constant coefficients for the components ai , i � 1, 2, 3
of the vector a in this rotating system. The substitution
ai � ai expiV transforms these differential equations
into the algebraic ones. The condition of solvability of
the obtained system of algebraic equations determines the
(cyclic) frequencies of the electron-spin evolution,
V0 � j2v0, V1 � j2v0�1 1

q
1 1 �e�´v0�2�H2

0 2 E2
0 �� � j2�2v0 2 Vpr� ,

V2 � j2v0�1 2

q
1 1 �e�´v0�2�H2

0 2 E2
0 �� � j2Vpr ,

(8)
where the approximations (4)–(6) were used as well as the
frequency

Vpr �
1

2v0

µ
e
´

∂2

�E2
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m

∂2

�1 2 n2�
v

2
(9)
was introduced.
Solving the system of algebraic equations with the fre-

quencies (8) and passing back to the laboratory system one
obtains
ax � a0
�

∑
cos�Vprt 1 w0� 1

µ
eA0

2m

∂2
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∏
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eA0
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√√√√
eA0
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!3!!!
,

ay � j2a0
�

∑
sin�Vprt 1 w0� 1
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eA0

2m

∂2
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eA0

m
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(10)
for transverse components of the vector a. The values a0
�,

a0
z , and w0 specify the last

a0 � a0
��nx cosw0 1 ny sinw0� 1 a0

z nz (11)

before the electron gets into the CPW. The new effect
of electron-spin precession in a CPW with yph fi c is
described by the first terms of Eqs. (10). This preces-
sion occurs about the wave vector k � knz with the fre-
quency (9) in the direction of rotation of the CPW vector
potential (2).

Equations (10) should be compared with their particular
case at yph � c,
ax � a0
� cosw0 1 a0

z
eA0

m
cosv0t ,

ay � j2a0
� sinw0 1 j2a0

z
eA0

m
sinv0t

(12)

which is described by Volkov’s solution of the Dirac equa-
tion. Note that Eqs. (12) do not describe any directed
evolution which could cause a continuous accumulation
of the electron-spin variation in time. The first terms
of Eqs. (10), on the opposite, describe the electron-spin
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rotation which does accumulate in time and remains ob-
servable when the CPW action is terminated.

Magnitude of the effect.— In principle, the spin preces-
sion frequency (9) can reach its own CPW frequency v

at eA0 	 m, if the problem of electric breakdown is by-
passed. At a given CPW intensity the frequency (9) greatly
exceeds that of the electron-spin precession caused by
radiative corrections. Indeed, the anomalous magnetic mo-
ment m0 gives rise to the electron-spin precession in vac-
uum with frequency

2�m0A0�2v �
µ

a

2p

∂2µ
eA0

m

∂2 v

2
(13)

having 2 more orders of a than (9). Equation (13) was
obtained in [4] and is discussed in detail in [5].
The frequency (9) exceeds (13) �m0�m0�2j1 2 n2j �
0.74 3 106j1 2 n2j times (2.2 3 106 times at yph � 0.5c
and 0.80 3 105 times at yph � 0.95c, for example). The
frequency (9) also j1 2 n2j 3 �m�v�2�a ln�m�v� times
(1010 times at v � 1.6eV and yph � 0.995c) exceeds
that of the electron-spin precession arising [5] because
of the first order radiative correction to the Compton
scattering amplitude.

Such an increase of the precession frequency at yph fi c
makes it possible to change the electron-spin direction
by short electromagnetic pulses almost instantly. For ex-
ample, a pulse of duration t will reverse the electron-spin
direction if the condition Vprt � p is fulfilled. To do
this the energy of the pulse with cross section S has to be
equal to

E2
0

4p
tcS �

p

�1 2 n2�
mc2

lre
S �

0.91S�cm2�
�1 2 n2�l�cm�

�J� (14)

�re � e2�mc2�, or to about 1 J at l 	 1 cm, S 	 1 cm2,
or 1023 J at l 	 10 mm, S 	 100 mm2. Such pulses,
which can readily be obtained, could be useful to change
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the electron beam polarization direction or electron-spin
state population in electron traps.

The relation 2m0Heff � h̄Vpr allows one to introduce
the strength

Heff �
5.4 3 103�1 2 n2�

l�cm�

µ
eA0

m

∂2

�G� (15)

of the effective magnetic field acting on the electron spin as
a CPW with phase velocity yph � c�n and vector poten-
tial amplitude A0. The effective field (15) can be very large
in the absence of breakdown limitations, reaching tens of
megagauss in sufficiently dense plasma at eA0 	 m and
l 	 1 mm. In more usual situations the CPW effective
magnetic field, pulsed or continuous, can be used instead
of the real one in experiments of ESR or the spin echo type
with quasifree electrons in gases or pores of irradiated or
amorphous semiconductors. In addition, the energy split-
ting of the electron-spin states in the effective field (15)
opens up a new way to separate electrons with opposite
longitudinal spin projections.

The Dirac equation solution.—We will show now how
the effect of electron-spin precession with the frequency
(9) is described by the solution of the Dirac equation in
the field of a CPW with yph fi c. This solution can be
represented in the form c � exp�2i´0t 1 ip0r�F�vh�
where ´0 �

q
p2

0 1 m2 and p0 are, respectively, the en-
ergy and momentum of the electron before it gets into the
CPW. The substitution

F � exp�iVh�

0
BBB@

exp�2ij2vh�2�c1

exp�1ij2vh�2�c2
exp�2ij2vh�2�c3
exp�1ij2vh�2�c4

1
CCCA (16)

transforms the Dirac equation in the field (2) to the system
of algebraic equations with constant coefficients which has
the form,
�V 2 j2v�2�c1 2 n�V 2 j2v�2�c3 2 eA0c4 � 0 ,

�V 1 j2v�2�c2 1 n�V 1 j2v�2�c4 2 eA0c3 � 0 ,

�V 2 j2v�2 2 2m�c3 2 n�V 2 j2v�2�c1 2 eA0c2 � 0 ,
(17)

�V 1 j2v�2 2 2m�c4 1 n�V 1 j2v�2�c2 2 eA0c1 � 0 ,

in the standard representation in the considered case of p0 � 0 and ´0 � m. The last allows one to solve the system (17)
in the most direct way. Indeed, excluding c1 from the first and third equations and substituting c3 from the second one,
we obtain a quadratic equation for V, corresponding to the upper sign in equality,

V2 2
2m

1 2 n2 V 2
v2

4
2

e2A2
0 6 j2mv

1 2 n2 � 0 . (18)

That one corresponding to the lower sign is obtained by excluding c2 from the second and fourth equations (17) and
substituting c4 from the first one. However only two,

V6 �
m

1 2 n2
2

∑
m2

�1 2 n2�2
1

v2

4
1

e2A2
0 6 j2mv

1 2 n2

∏1�2

� 7j2
v

2
2

e2A2
0

2m
1

v2

8m2 �1 2 n2� �1 2 j2
2� 6 j2

µ
eA0

m

∂2

�1 2 n2�
v

4
, (19)
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of the four roots of Eq. (18) should be taken into con-
sideration in the case of adiabatic CPW amplitude varia-
tion at the electron location point. Indeed, the roots (19)
tend to 7j2v�2 and lead to the adequate time dependence
c 	 exp�2imt� of the electron wave function at A0 ! 0
[see Eq. (20) below]. Meanwhile another pair of roots
which corresponds to the “plus” sign of the square root
in Eq. (19) leads to c 	 exp�2im�1 1 n2�t��1 2 n2��
at A0 ! 0 and should be ignored in the case of adiabatic
CPW field growth starting from A0 � 0. This pair of roots,
however, should be taken into consideration for electrons
emergent inside a wave, for example, in the process of
ionization.

In order to demonstrate the correspondence of the Dirac
equation solution to the semiclassical spin evolution pic-
ture, the second row of Eq. (19) has been obtained by
expansion of the first one up to terms quadratic in small
quantities v�m and eA0�m. The considered electron-spin
precession is evidently described by the fourth term of this
expansion proportional to the spin precession frequency
(9) and depending both on polarization sign and wave
intensity.

The substitution of the frequencies V1 and V2 into
Eqs. (17) yields the pairs of equations c4 � 0, c1 � nc3
and c3 � 0, c2 � 2nc4, respectively, which determine
two solutions of the system (17). Their linear combination

c � exp

µ
2i´t 1 ipz 2 i

e2A2
0

2m
h

∂

3

0
BBBBBB@

c1e2i Vpr

2
h

2 c2
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2m e2ij2vh1i Vpr

2
h

c2ei Vpr

2
h

1 c1
eA0n
2m eij2vh2i Vpr

2
h

2c2
eA0

2m e2ij2vh1i Vpr
2

h

2c1
eA0

2m eij2vh2i Vpr

2
h

1
CCCCCCA (20)

gives the required solution of the Dirac equation in a plane
CPW with yph fi c. The coefficients c1 and c2 of this
linear combination are the amplitudes of probability to find
an electron, before it gets into a CPW, to be polarized along
and opposite the wave vector k � knz , respectively. The
different dependence of the leading terms c6e7i�Vpr�2�h

(the first terms of the two upper lines) of the bispinor
(20) on h � t reflects the electron energy level splitting
arising at yph fi c and giving rise to the predicted effect of
electron-spin precession in a CPW. Note that the solution
(20) takes the form of that obtained by Volkov in a plane
CPW with yph � c and leads to Eqs. (12).

Equation (20) allows one to evaluate the components of
the 4-vector of electron spin [2]

am � c̄g5gmc�c̄c , (21)
where g5 and gm, m � 0, 1, 2, 3, are the Dirac matrixes
and
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c̄c � �jc1j
2 1 jc2j

2� �1 1 �eA0�2m�2�n2 2 1��
1 O����eA0�m�4���

is the normalizing factor already used to obtain Eqs. (10).
A direct substitution of Eq. (20) into Eq. (21) again yields
Eqs. (10) with the well-known relations [7]

a0
� expiw0 �

2c�
1c2

jc1j2 1 jc2j2
, a0

z �
jc1j

2 2 jc2j
2

jc1j2 1 jc2j2
,

of the classical spin components with the quantum am-
plitudes c6. Thus, the solution (20) of the Dirac equa-
tion in the plane CPW of low field strength (4) reproduces
the semiclassical picture of the electron-spin evolution rig-
orously confirming the prediction of the new effect of
electron-spin precession at yph fi c. This solution also de-
scribes specific quantum features of the electron-spin evo-
lution will manifest themselves in a CPW with eA0 $ m,
v $ m, and yph fi c.

In conclusion, it was shown that a departure of a phase
velocity of a circularly (elliptically in the general case)
polarized electromagnetic wave from the speed of light in
vacuum gives rise to the effect of electron-spin precession
about the wave vector with a precession frequency exceed-
ing that caused by the radiative corrections by 6 orders
of magnitude and more. This effect opens up new pos-
sibilities to control the electron polarization in different
situations.
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