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Spin Susceptibility of Neutron Matter at Zero Temperature
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The auxiliary field diffusion Monte Carlo method is applied to compute the spin susceptibility and
the compressibility of neutron matter at zero temperature. Results are given for realistic interactions
which include both a two-body potential of the Argonne type and the Urbana IX three-body potential.
Simulations have been carried out for about 60 neutrons. We find an overall reduction of the spin
susceptibility by about a factor of 3 with respect to the Pauli susceptibility for a wide range of densities.
Results for the compressibility of neutron matter are also presented and compared with other available
estimates obtained for semirealistic nucleon-nucleon interactions by using other techniques.
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In this paper, we show that the strong correlations in-
duced by realistic nucleon-nucleon interactions reduce, by
up to about a factor of 3, the spin susceptibility, x, of
degenerate neutron matter. This reduction may have im-
portant implications for problems of astrophysical inter-
est, such as, for instance, neutrino scattering rates in dense
matter and, more generally, the study of supernovae and
protoneutron stars [1,2].

Starting from the pioneering work by Sawyer [3], sev-
eral calculations of the neutrino mean free path in uniform
nuclear matter have been performed [2,4–6] which show
that the effects due to strong interactions are relevant, par-
ticularly in the spin-density channel which couples with
the axial vector current. A sizable reduction of x, or,
equivalently, a large value of the G0 Landau parameter,
leads to an appreciable suppression of the Gamow-Teller
transitions.

The neutrino momenta and the momentum transfers in
many applications are small compared with the neutron
Fermi momentum, and both energy transfers and the tem-
perature are small compared with the neutron Fermi en-
ergy. Therefore, the Landau parameters of neutron matter
at zero temperature are the main quantities to compute in
order to evaluate the mean free path of a neutrino in dense
matter.

In this respect, ab initio calculations of the Landau pa-
rameters or related quantities, such as the compressibility
K , the effective mass m�, or the spin susceptibility x, for
degenerate neutron matter are extremely important. Such
calculations can now be performed because of recent ad-
vances in many-body methods, particularly those based on
quantum simulations, and because of the much improved
knowledge of the nucleon-nucleon interaction.

Previous evaluations of the Landau parameters Fl and
Gl (with l # 1) for neutron matter were based either on
Skyrme-type potential models [2] or on microscopic cal-
culations performed with semirealistic bare interactions
[7–9]. The qualitative behavior of the compressibility ra-
tio is
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where KF , the compressibility of the noninteracting Fermi
gas, is similar in most of the various calculations. On the
contrary, the spin susceptibility ratio, which is approxi-
mately related to G0 by
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may differ up to a factor of 3 at equilibrium density of
nuclear matter r0 � 0.16 fm23, and even more at higher
densities.

The Skyrme models generally predict much smaller
values of G0 with respect to microscopic calculations,
and become unstable to spin oscillations, driving toward
ferromagnetic ground states [2], since 1 1 G0 becomes
negative for densities in the range �2 4�r0. At small
momentum transfer, N-N correlations enhance the spin
response approximately by a factor �x�xF �2. Therefore,
Skyrme models predict neutrino mean free paths smaller
than microscopic models.

On the other hand, the existing microscopic calculations
have been performed with old semirealistic interactions,
such as the Reid or the Bethe-Johnston potentials, and no
three-body force. In addition, the many-body methods
used until now may be questionable for the convergence
of the underlying perturbation theory as well as for the
treatment of spin-dependent correlations.

We report the results of quantum simulations of neutron
matter for the old Reid-y6 potential [10] and modern re-
alistic interactions, based upon the Argonne y18 two-body
potential plus the Urbana three-body potential, UIX, [11],
denoted hereafter as AU18. It is well known that such in-
teractions provide a realistic description of light nuclei and
nuclear matter [12,13].

The quantum simulations have been carried out by
using a new auxiliary field diffusion Monte Carlo
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method, the so-called AFDMC method [14]. It introduces
auxiliary field variables in the simulation, which makes
it the only existing quantum Monte Carlo method that
can handle spin-dependent nuclear Hamiltonians and a
relatively large number of nucleons. In this approach,
the scalar parts of the Hamiltonian are propagated as in
standard diffusion Monte Carlo (DMC) [15]. Auxiliary
fields are introduced to replace the spin-isospin-dependent
interactions between pairs of particles with interactions
between particles and auxiliary fields. Integrating over
the auxiliary fields reproduces the original spin-isospin-
dependent interaction. The method consists of a Monte
Carlo sampling of the auxiliary fields and then propagating
the spin-isospin variables at the sampled values of the
auxiliary fields. This propagation results in a rotation of
each particle’s spin-isospin spinor.

The guiding function, CT , in our AFDMC calculation is
a simple trial function given by a Slater determinant of one-
body space-spin orbitals multiplied by a central Jastrow
correlation. The orbitals are plane waves that fit in the box
times two component spinors, corresponding to neutron-up
and neutron-down states. The overlap of a walker with
this wave function is the determinant of the space-spin
orbitals, evaluated at the walker position and spinor for
each particle, and multiplied by the scalar Jastrow product.
Such an overlap is complex, so the usual fermion sign
problem becomes a phase problem. We constrain the path
of the walkers to a region where the real part of the overlap
with our trial function is positive. For spin-independent
potentials this reduces to the fixed-node approximation.

This method has already been applied to unpolarized
neutron matter and neutron drops �A � 7, 8� with fairly
realistic interactions that include tensor, spin-orbit, and
three-body terms. The neutron matter calculations have
been done with up to 66 neutrons in a periodic box with
a low variance (,0.1 MeV per nucleon). The calculation
scales in particle number roughly as fermion Monte Carlo
with central forces [16,17].

We compute the spin susceptibility by applying a mag-
netic field to the system. Ignoring any orbital effects, the
Hamiltonian is given by

H � H0 2
X

i

�si ? �b , (3)

where �b � m �B and m � 6.030 774 3 10218 MeV�G,
and the susceptibility is defined as

x � 2rm2 ≠2E0�b�
≠b2

Ç
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, (4)

where r is the number density and E0�b� is the ground
energy in field b.

Let us use the Pauli expansion of the energy
per particle as a function of the spin polarization
p � 2≠E0�b��≠bjb�0:

E�p� � E�0� 2 bp 1
1
2 p2E00�0� , (5)
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where the derivatives are with respect to the polarization.
Minimizing E�p� with respect to p, one gets the following
result for the spin susceptibility:

x � m2r
1

E00�0�
. (6)

For a noninteracting Fermi gas the spin susceptibil-
ity is xF � m2mkf��h̄2p2�. AFDMC allows us to get
the energy eigenvalue, E0�Jz , b�, for the interacting sys-
tem in a field b for a state of a given spin asymmetry
Jz � N" 2 N#.

Assuming that the energy and polarization are known in
terms of Jz , E00�0� in Eq. (6) can be obtained as a straight-
forward application of the chain rule,
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Since we are calculating the lowest energy state, the deriva-
tive of the energy with respect to Jz vanishes. Therefore
this result reduces to

E00�0� �

∑
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≠Jz

∏22 ≠2E0

≠J2
z

. (8)

Let us consider the noninteracting finite systems as a
guide for the quantum simulations of the interacting ones.
For such systems the energy is not a quadratic function
of the external field b. In Fig. 1 we plot E0�Jz ,b�, as
a function of b, for four different systems with a finite
number N � 60 of noninteracting neutrons in a periodic
box at r � 2r0. The cases, for which we have done
simulations, are shown in the figure, namely, �N", N#� �
�33, 33�, �33, 27�, �57, 7�, and �57, 0�. One can see that
the various E�Jz , b� are linear in b and each of them is
tangent to the Pauli parabola (which refers to the infinite
Fermi gas case) at some value b0 of the field b. We also
compare in the figure the Pauli parabola with the exact
result for the Fermi gas at that density. They are very close
to b � 50 MeV. Using Eq. (8), one gets x�xF � 1 for
Jz � 50 and 57.

In the interacting case, the derivatives in Eq. (8) can
be easily estimated by computing E0�Jz , b� with AFDMC,
and using the following equations,

≠p
≠Jz

�
E0�Jz � Jz0, b � 0� 2 E0�Jz � Jz0, b � b0�

Jz0b0
,

(9)

≠2E0

≠J2
z

� 2
E0�Jz � Jz0, b � 0� 2 E0�Jz � 0, b � 0�

J2
z0

,

(10)

whose validity relies on the following reasonable assump-
tions: (i) for b � 0, E0�Jz , b� is quadratic in Jz ; (ii) for
a fixed Jz, E0�Jz, b� is linear in b; (iii) the polarization is
linear in Jz . These assumptions become exact in the limit
of an infinite system with Jz and b small.
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FIG. 1. The energy of noninteracting neutrons as a function of
magnetic field b at r � 2r0 for various finite-sized closed shell
trial functions with spin up and spin down values shown. Also
plotted is the correct infinite system energy and the parabolic
Pauli value.

The noninteracting case indicates the use of Jz0 � 50
and the value for b0 at which E�Jz0 � 50, b� is tangent
to the Pauli parabola (for the density r � 2r0 of Fig. 1,
b0 � 53 MeV). Most of our calculations have been car-
ried out with Jz0 � 50. At r � 1.25r0 we have verified
the linearity of E�Jz0 � 50, b� on b beyond b0�1.25r0� �
39 MeV, finding that the result for x�xF is largely in-
dependent on the value of b0. We have also verified the
dependence of x�xF on Jz0, performing simulations with
Jz0 � 6 and found that it is very weak.

A time step Dt � 5 3 1025 MeV21 was sufficient in
most of the quantum simulations to obtain agreement be-
tween the mixed and the growth energies [15] within the
statistical accuracy.

We have made simulations with the Reid-y6 interaction
(Reid6), the same used in the correlated basis function
(CBF) calculation of Ref. [9]. Our result for x�xF , at
r � 1.25r0, is about 25% smaller, which indicates that
the CBF perturbative calculations of Ref. [9], based on
Jastrow-correlated basis functions, either have not reached
a satisfactory convergence for the Landau parameter G0

or Eq. (2) may not be sufficiently adequate for the Reid6
interaction.

We have also considered realistic interactions, charac-
terized by the so-called y

0
6 or y

0
8 two-body potentials plus

UIX three-body potential, and hereafter denoted as AU6’
and AU8’, respectively. The y

0
8 is a two-body poten-

tial of the Argonne type which includes the four central
spin-isospin components, plus the four tensor and spin-
orbit ones. It fits the nucleon-nucleon experimental data
and embodies the main features of the Argonne y18 [18].
The y

0
6 potential is the y

0
8 with its spin-orbit components

removed.
Our results for x�xF , obtained with the Reid6, AU6’,

and AU8’ interactions, are given in Table I and compared
with previous microscopic calculations of the same quan-
tity. The Brueckner theory calculations of Ref. [8] are per-
formed with the full Reid potential and therefore are not
181101-3
TABLE I. Spin susceptibility ratio x�xF of neutron matter.
Our AFDMC results for the interactions AU6’, AU8’, and Reid6
are compared with those obtained from Refs. [8,9] by using
Eq. (2). The statistical error is given in parentheses.

r�r0 Reid [8] Reid6 [9] AU6’ AU8’ Reid6

0.75 0.45 0.53 0.40(1)
1.25 0.42 0.50 0.37(1) 0.39(1) 0.36(1)
2.0 0.39 0.47 0.33(1) 0.35(1)
2.5 0.38 0.44 0.30(1)

directly comparable with our Reid6 calculations. How-
ever, we do not find a sizable contribution to x�xF coming
from the spin-orbit component of the two-body potential.
Our results for AU6’ and AU8’ coincide within the statis-
tical error. To address the problem of the influence of the
three-body force on the results, we have calculated the spin
susceptibility at r � 2r0 using the Argonne y

0
6 potential

and no three-body interactions. We have found that, while
the energy is reduced by roughly 25 MeV per particle, the
spin susceptibility ratio is practically unchanged [0.31(1)].

We have also calculated the compressibility K , given
by

1
K

� r3 ≠2E0�r�
≠r2 1 2r2 ≠E0�r�

≠r
, (11)

where E0�r� is a polynomial fit to the AFDMC energies
E�Jz � 0, b � 0�. For a Fermi gas the compressibility is
KF � 9p2m��k5

f h̄2�. The AFDMC results for K�KF ,
obtained with the AU6’ interaction, are shown in Table II,
where they are also compared with the corresponding CBF
estimates (AU6’-CBF) and other existing microscopic cal-
culations [8,9,13].

For the sake of completeness, we show in Fig. 2 the
equations of state of neutron matter, which have been used
to compute the compressibility ratio of Table II.

The AU18 results are taken from Ref. [13], and have
been obtained with the full AU18 model interaction, by
using variational Fermi hypernetted chain in the single
chain operator approximation (FHNC�SOC) methods.
The AU6’-CBF [19] results have been obtained by using
the AU6’ interaction, as in the AFDMC simulations, and
essentially the same many-body technique as in Ref. [13].
They also include the corrections coming from the lowest
order elementary diagram, as discussed in Refs. [17,20].

TABLE II. Compressibility ratio K�KF of neutron matter.
Our AFDMC results for the AU6’ interaction are compared with
those obtained with CBF theory [19] (AU6’-CBF) and those of
Refs. [8,9,13]. The statistical error is given in parentheses.

r�r0 Reid [8] Reid6 [9] AU18 [13] AU6’-CBF AU6’

0.75 0.91 2.06 1.10 0.85 0.89(3)
1.25 0.70 1.35 0.71 0.45 0.47(3)
2.0 0.49 0.77 0.26 0.23 0.21(3)
2.5 0.42 0.60 0.15 0.17 0.14(3)
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FIG. 2. AFDMC equation of state of the AU6’ model of
neutron matter (dots); CBF theory [19] results for the same in-
teraction model are in the shaded area where the highest values
correspond to the variational estimate. The equation of state
obtained in Ref. [13] for the AU18 interaction by using
FHNC�SOC theory is given by dashes. The errors are smaller
than the symbols.

One can see that the AFDMC results for both the equa-
tion of state and the compressibility of the AU6’ model
of neutron matter are in reasonably good agreement with
those obtained by using CBF theory.

We have estimated the finite size effects in the AFDMC
simulations by performing variational calculations with the
periodic box FHNC method of Ref. [21]. They indicate a
correction which is at most 10% of the mixed energy per
particle. An error of the same size is expected for the
compressibilty ratio and of an order of magnitude smaller
for the spin susceptibility. A more detailed discussion
of the AFDMC calculation and the equation of state of
neutron matter will be given elsewhere [17].

In conclusion, we have presented new results on the
spin susceptibility and the compressibility of neutron mat-
ter at zero temperature, which show a strong reduction
of these quantities with respect to their Fermi gas val-
ues. The calculations have been performed for realistic
model interactions, which include tensor, spin-orbit, and
three-body terms, and by using the AFDMC method, a
newly developed quantum simulation technique, capable of
dealing with strongly spin-dependent interactions. Of par-
ticular relevance is the quenching by about a factor of 3 of
the spin susceptibility with respect to the commonly used
Pauli value, found at all the various densities considered.
Such a reduction has strong effects on the mean free path
of a neutrino in dense matter and should be seriously taken
181101-4
into account in the studies of supernovae and protoneutron
stars.
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