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We construct classes of stochastic differential equations with fluctuating friction forces that generate a
dynamics correctly described by Tsallis statistics. These systems generalize the way in which ordinary
Langevin equations underlie ordinary statistical mechanics to the more general nonextensive case. As
a main example, we construct a dynamical model of velocity fluctuations in a turbulent flow, which
generates probability densities that very well fit experimentally measured probability densities in Eulerian
and Lagrangian turbulence. Our approach provides a dynamical reason why many physical systems with
fluctuations in temperature or energy dissipation rate are correctly described by Tsallis statistics.

DOI: 10.1103/PhysRevLett.87.180601 PACS numbers: 05.70.Ln, 05.40.–a, 47.27.– i
Recently, there has been considerable interest in the
formalism of nonextensive statistical mechanics (NESM)
as introduced by Tsallis [1] and further developed by many
others (e.g. [2–4]). In the meantime there is growing evi-
dence that the formalism, rather than being just a theoreti-
cal construction, is of relevance to many complex physical
systems. Applications in various areas have been reported,
mainly for systems with either long-range interactions
[5–8], multifractal behavior [9,10], or fluctuations of
temperature or energy dissipation rate [11–15]. A recent
interesting application of the formalism is that to fully
developed turbulence [10,12,13]. Precision measurements
of probability density functions (pdfs) of longitudinal
velocity differences in high-Reynolds number turbulent
Couette-Taylor flows are found to agree quite perfectly
with analytic formulas of pdfs as predicted by NESM
[13]. Despite this apparent success of the nonextensive
approach, still the question remains why in many cases
(such as the above turbulent flow) NESM works so well.
In this Letter, we will introduce novel types of stochastic
differential equations (SDEs) with three important proper-
ties. First, it can be rigorously proven that these generate
Tsallis statistics. Second, they are simple extensions of
ordinary Langevin equations, thus physically relevant.
Third, and most important, the non-Gaussian stationary
probability densities agree quite precisely with what is
measured in turbulence experiments. Thus, these SDEs
yield a dynamical foundation for recently used successful
fits in turbulence [13].

To start with, let us first go back to ordinary statistical
mechanics and just consider a very simple well-known
example, the Brownian particle [16]. Its velocity u satisfies
the linear Langevin equation,

�u � 2gu 1 sL�t� , (1)

where L�t� is Gaussian white noise, g . 0 is a friction
constant, and s describes the strength of the noise. The
stationary probability density of u is Gaussian with average
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0 and variance b21, where b �
g

s2 can be identified with
the inverse temperature of ordinary statistical mechanics
(we assume that the Brownian particle has mass 1).

The above simple situation completely changes if one
allows the parameters g and s in the SDE to fluctuate as
well. To be specific, let us assume that either g or s, or
both, fluctuate in such a way that b � g�s2 is x2 distrib-
uted with degree n. This means the probability density of
b is given by

f�b� �
1

G�n
2 �

Ω
n

2b0

æn�2

bn�221 exp

Ω
2

nb

2b0

æ
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The x2 distribution (also called G distribution) is a typical
distribution that naturally arises in many circumstances.
For example, consider n independent Gaussian random
variables Xi , i � 1, . . . , n with average 0. If b is given
by the sum

b :�
nX

i�1

X2
i , (3)

then it has the pdf (2). The average is given by

�b� � n�X2� �
Z `

0
bf�b� db � b0 , (4)

and the variance by

�b2� 2 b2
0 �

2
n

b2
0 (5)

(see also [11]).
Now assume that the time scale on which b fluctuates

is much larger than the typical time scale of order g21 that
the Langevin system (1) needs to reach equilibrium. In this
case, one obtains for the conditional probability p�ujb�
(i.e., the probability of u given some value of b),

p�ujb� �
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1
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æ
, (6)
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for the joint probability p�u, b� (i.e., the probability to
observe both a certain value of u and a certain value of
b),

p�u, b� � p�ujb�f�b� , (7)

and for the marginal probability p�u� (i.e., the probability
to observe a certain value of u no matter what b is),

p�u� �
Z

p�ujb�f�b� db . (8)

The integral (8) is easily evaluated and one obtains

p�u� �
G�n

2 1
1
2 �

G�n
2 �

µ
b0

pn

∂1�2 1

�1 1
b0

n u2��n�2�1�1�2�
. (9)

Hence, the SDE (1) with x2-distributed b � g�s2 gener-
ates the generalized canonical distributions of NESM [1],

p�u� �
1

�1 1
1
2 b̃�q 2 1�u2�1��q21�

, (10)

provided the following identifications are made.
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We already see from this simple example that the physi-
cal inverse temperature b0 � �b� does not necessarily co-
incide with the inverse temperature parameter b̃ used in
the nonextensive formalism (see also [3] for related re-
sults). Moreover, Eq. (11) implies q $ 1. Though Wilk
et al. have shown that the case q , 1 can also be associ-
ated with fluctuations [17], this case requires more com-
plicated u-dependent distribution functions f�b, u�, which
violate our assumption of time scale separation.

More generally, we may also consider nonlinear
Langevin equations of the form

�u � 2gF�u� 1 sL�t� , (13)

where F�u� � 2
≠

≠u V�u� is a nonlinear forcing. To be
specific, let us assume that V �u� � Cjuj2a is a power-law
potential. The SDE (13) then generates the conditional pdf

p�ujb� �
a

G� 1
2a �

�Cb�1��2a� exp	2bCjuj2a
 , (14)

and for the marginal distributions p�u� �R
p�ujb�f�b� db, we obtain, after a short calculation,

p�u� �
1

Zq

1
�1 1 �q 2 1�b̃Cjuj2a�1��q21� , (15)

where

Z21
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and

q � 1 1
2a

an 1 1
, (17)

b̃ �
2a

1 1 2a 2 q
b0 . (18)

To generalize to N particles in d space dimensions, we
may consider coupled systems of SDEs with fluctuating
friction forces, as given by

��ui � 2gi
�Fi� �u1, . . . , �uN � 1 si

�Li�t� i � 1, . . . , N .
(19)

Suppose that a potential V � �u1, . . . , �uN � exists for this prob-
lem such that �Fi � �≠��≠�ui��V . Moreover, assume that
the partition function is of the form

Z�b� �
Z

d �u1 · · · d �uN e2bV � bxe2by. (20)

If all bi � gi�s
2
i are given by the same fluctuating

x2-distributed random variable bi � b, one ends up with
marginal distributions of the form

p� �u1, . . . , �uN � �
1

�1 1 b̃�q 2 1�V � �u1, . . . , �uN ��1��q21� ,

(21)

i.e., the generalized canonical distributions of NESM with

q � 1 1
2

n 2 2x
, (20)

and

b̃ �
b0

1 1 �q 2 1� �x 2 b0y�
. (23)

However, in many physical applications, the various par-
ticles will be dilute and only weakly interacting. Hence,
in this case b is expected to fluctuate spatially in such
a way that the local inverse temperature bi surrounding
one particle i is almost independent from the local bj

surrounding another particle j. Moreover, the potential
is approximately just a sum of single-particle potentials
V � �u1, . . . , �uN � �

PN
i�1 Vs� �ui�. In this case integration over

all bi leads to marginal densities of the form

p� �u1, . . . , �uN � �
NY

i�1

1
�1 1 b̃�q 2 1�Vs� �ui��1��q21� ,

(24)

i.e., the N-particle nonextensive system reduces to prod-
ucts of one-particle nonextensive systems (this type of fac-
torization was, e.g., successfully used in [15]). The truth
of what the correct nonextensive thermodynamic descrip-
tion is will often lie between the two extreme cases (21)
and (24).
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Let us now come to our main physical example, namely,
fully developed turbulence. Let u in Eq. (13) represent a
local velocity difference in a fully developed turbulent flow
as measured on a certain scale r. The parameter b :�
g�s2 of the SDE is an unknown function of the energy
dissipation in the flow. Let us consider a model, where

b �
g

s2 � ertL . (25)

Here er is the (fluctuating) energy dissipation rate averaged
over r3, and t is a typical time scale during which energy is
transferred. L is a constant with dimension length4�time4;
its value is irrelevant for the following. Both er and t can
fluctuate, and we assume that b � ert is x2 distributed.
For power-law friction forces, the SDE (13) generates the
stationary pdf (15). In Fig. 1 this theoretical distribution is
compared with experimental measurements in two turbu-
lence experiments, performed on two very different scales.
All distributions have been rescaled to variance 1. Appar-
ently, there is very good coincidence between experimen-
tal and theoretical curves, thus indicating that our simple
model assumptions are a good approximation of the true
turbulent statistics.

Generally, for a turbulent flow the averaged energy dis-
sipation rate er� �x, t� in a volume V of size r3 is defined as

er ��x, t� �
1
r3

Z
V

e��x 1 �r 0, t� d3r 0, (26)

where

e��x, t� �
1
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(27)
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FIG. 1. Histogram of longitudinal velocity differences as mea-
sured by Swinney et al. [13,18] in a turbulent Couette-Taylor
flow with Reynolds number Rl � 262 at scale r � 116h (solid
line), where h is the Kolmogorov length. The experimental data
are very well fitted by the analytic formula (15) with q � 1.10
and a � 0.90 (dashed line). The square data points are a his-
togram of the acceleration (� velocity difference on a very small
time scale) of a Lagrangian test particle as measured by Boden-
schatz et al. for Rl � 200 [19]. These data are well fitted by
(15) with q � 1.49 and a � 0.92 (dotted line).
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is the instantaneous dissipation, n is the kinematic viscos-
ity, and yi is the velocity fluctuation in i direction. The
physical idea of considering the SDE (13) with b � ert
is that a test particle in the turbulent flow moves for a while
in a certain region with a given er , then moves to another
region with another er , and so on. The average strengths
of the effective friction and chaotic driving forces vary in
the various regions of the liquid and are effectively mod-
eled by the fluctuating b.

The larger the volume V over which e is averaged, the
more independent events will contribute to the fluctuations
of b � ert. Hence n, according to Eq. (3), is expected
to be larger at larger scales r, which means according to
Eq. (17) that q is closer to 1. This is indeed confirmed
by turbulence experiments, where q�r� is observed to de-
crease with increasing r in a monotonous way [see [13]
for precision measurements of q�r�].

At the smallest scale, the Kolmogorov length scale h �
�n3�e�1�4, one has

b � ethL � �en�1�2L � �uh�2L , (28)

where th :� �n�e�1�2 denotes the Kolmogorov time and
uh :� h�th � �ne�1�4 is the Kolmogorov velocity (see,
e.g., [20]). If e fluctuates, then all these quantities fluc-
tuate as well. It is now reasonable to assume that there
are three independently fluctuating Kolmogorov velocities

ui
h, i � 1, 2, 3 such that uh � j �uhj �

qP3
i�1�ui

h�2. The
three components ui

h describe the flow of energy into the
three different space directions. The simplest model as-
sumption is that these Kolmogorov velocities are Gaussian
with average zero. This means we identify Xi �

p
L ui

h in
Eq. (3). Hence at the smallest scale the three space dimen-
sions lead to n � 3 or, using Eq. (17), q � 3

2 if a � 1.
This is indeed confirmed by the fit of the small-scale data
of the Bodenschatz group in Fig. 1, yielding q � 1.49 and
an a as given by Eq. (17).

It is interesting to see that this approach allows us to
view the fluctuations of e at the Kolmogorov scale in terms
of a (hypothetical) ordinary Brownian particle of mass M
that is subjected to ordinary thermal noise of temperature
T . Its fluctuating velocity �V coincides with the fluctuating
vector �uh of Kolmogorov velocities. This (constructed)
Brownian particle just absorbs the turbulent energy flow at
the Kolmogorov scale. It bridges the gap between thermal
and macroscopic description. According to the standard
Ornstein-Uhlenbeck theory, equipartition of energy yields

1
2 M��u1

h�2� �
1
2kT , (29)

which, using Eq. (28), can be written as

M �
3kT

n1�2�e1�2�
. (30)

In conclusion, our approach yields a dynamical reason
for the validity of Tsallis statistics for systems with a fluc-
tuating energy dissipation rate (or, in general, fluctuating
180601-3
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friction forces). On the smallest scales of turbulent sys-
tems, a prediction for the entropic index q is given, and
the obtained probability densities very well agree with re-
cent experimental precision measurements.

I am very grateful to Harry Swinney and Eberhard
Bodenschatz for providing me with the experimental data
displayed in Fig. 1.
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