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Thermal vs Quantum Decoherence in Double Well Trapped Bose-Einstein Condensates
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The quantum and thermal fluctuations of the phase are investigated in a cold Bose gas confined by
a double well trap. The coherence of the system is discussed in terms of the visibility of interference
fringes in both momentum and coordinate space. The visibility is calculated at zero as well as at finite
temperature. The thermal fluctuations are shown to affect significantly the transition from the coherent to
the incoherent regime even at very low temperatures. The coherence of an array of multiple condensates

is also discussed.
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After the first interference measurements carried out on
two expanding and overlapping condensates [1], the prob-
lem of the relative phase between Bose-Einstein conden-
sates has stimulated extensive theoretical work in the past
few years (see, for example, [2] and references therein) as
well as new experimental attempts to point out Josephson-
like phenomena [3,4]. A challenging question is the tran-
sition from a coherent to an incoherent regime associated
with the increase of the fluctuations of the relative phase
between condensates confined in different traps. The tran-
sition can be in principle controlled by changing the tun-
neling probability between the wells either by tuning the
height and the width of the barrier or the number of atoms.
Most of theoretical works have focused thus far on the
ideal case of zero temperature where the fluctuations of
the phase are of quantum nature. These works have shown
that if the tunneling probability is sufficiently small the
ground state of an atomic gas interacting with repulsive
forces is not globally coherent, but exhibits new features
of quantum nature, associated with the appearance of num-
ber squeezed configurations (see, for example, [5]).

The purpose of this Letter is to discuss the relative im-
portance of the quantum and the thermal fluctuations in
driving the transition between the coherent and the inco-
herent regimes. Because of the low energy scale associated
with the Josephson oscillation of the condensates the ther-
mal effect may actually become crucially important even
if one works at very low temperature.

Let us consider a dilute gas of atoms confined by an ex-
ternal potential characterized by a double well along the
x direction. The problem of an array of multiple wells
will be discussed in the last part of the Letter. Near the
bottom of the two traps the potential can be approximated
by a harmonic function characterized by the oscillator fre-
quency wp, which provides the relevant frequency scale
of the collective excitations of each condensate (actually,
due to the 3D nature of the problem, the harmonic ex-
pansion will in general introduce three different frequen-
cies). We start our discussion by recalling the classical
problem of the Josephson oscillation in the framework of
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the Gross-Pitaevskii (GP) theory for the order parameter.
If the overlap between the condensates confined in the two
wells is small we can naturally construct an approximate
solution of the time dependent GP equation in the form,

V(r,1) = [V;(r,N)e'® + W, (r,N,)e'®], (1)

where V¥, ,(r, N;,) are real functions satisfying the sta-
tionary GP equation in the left (/) and right () wells, re-
spectively, and normalized to [ dr ‘Iflz,r = N;, with N; +
N, = N. The time dependence of the solution (1) is con-
tained in the phases ®; , and in the number of atoms N; ,
confined in each well. The equations of motion can be
written in the canonical form d® /9t = 0H;/d(hk) and
d(hk)/ot = —oH;/0d, where

H; = Eck® — E; cos® )

is the so-called Josephson Hamiltonian [6,7] depending
on the conjugate variables fik and ®, where k = (N, —
N,)/2 is determined by the relative number of atoms in the
two condensates and ® = ®; — @, is their relative phase.
In deriving Eq. (2) we have assumed k& << N and intro-
duced the relevant parameters E, = 2du;/dN; and E; =
(h?/m) [dy dz[V,0V,/ox — W¥,0W;/dx],—o, Where u;
is the chemical potential of each condensate and all the
quantities are evaluated at N; = N, = N /2. The term in
E¢ accounts for the interaction effects in each conden-
sate and vanishes in the noninteracting gas since in this
case the chemical potential does not depend on the number
of atoms. In the Thomas-Fermi limit instead the parame-
ter Ec takes the value Ec = (4/5)u;/N; due to the N%/
dependence of the chemical potential of a Bose-Einstein
condensate trapped by a 3D harmonic potential. In the
Thomas-Fermi regime the value of E¢, hence, decreases
with N. The term in E;, which describes the tunneling
probability between the two wells and is at the origin of
the Josephson current, instead increases with N. Expres-
sion (2) for H; can be easily generalized to include the
effects of gravity.

© 2001 The American Physical Society 180402-1



VOLUME 87, NUMBER 18

PHYSICAL REVIEW LETTERS

29 OCTOBER 2001

Equation (1) represents a good approximation to the
solution of the GP equation only if the Josephson motion
is decoupled from the other modes of the condensate. This
implies that the quantities @ and & should vary slowly in
time with respect to the typical time 1/wy, characterizing
the internal motion of each condensate. The Hamiltonian
(2) corresponds to the classical problem of the pendulum.
For small oscillations near equilibrium (k = 0, ® = 0)
the motion is of harmonic nature and is characterized by
the classical plasma frequency:

1
wer = VEEc, 3)

so that, in order to ensure the decoupling from the internal
oscillations of the condensate, the inequality w.; <K @,
should be satisfied.

Let us now proceed to quantize the classical Hamilto-
nian (2). This is achieved by replacing the conjugated
variables @ and ik with operators satisfying the commuta-
tion relation [®, ik] = ik. It is convenient to work in the

“® representation,” where k = —id/9d® and the quantum
problem can be described by the Hamiltonian,
)24 ——lE a—2—13 cos® 4)

acting in the space of the periodical functions of period
2m. The quantization introduces quantum fluctuations
in the equilibrium state of the system whose nature de-
pends on the ratio Ec/E;. These fluctuations are di-
rectly related to measurable observables. For example, if
one calculates the in situ momentum distribution of two
separated condensates with a fixed relative phase ®, one
finds fringes in momentum space given by the expression
[8] n(p) = 2[1 + cos(pxd/h + ®)]ng(p), where no(p)
is the momentum distribution of each condensate and d is
the relative distance along the x axis. The typical width
of no(p) is given by fi/R, where R is the spatial size of
each condensate. The momentum distribution of a single
trapped Bose gas has been already the object of measure-
ments based on stimulated light scattering [9]. If the value
of the relative phase fluctuates, the average value of the
momentum distribution at equilibrium is described by the
equation,

n(p) = 2[1 + acos(p.d/h)]no(p), )

where
a = {(cos®P), (6)

and we have used the fact that (sin®) = 0 at equilibrium.
The parameter « has a physical meaning of first impor-
tance. It provides the degree of coherence of the con-
figuration and will be called the coherence factor. If the
value of the phase is localized around zero, the value of
a is close to unity (full coherence) and one can expand
Eq. (6) to calculate the quadratic fluctuations of the phase
as (A®?) = 2(1 — a). If instead the phase is delocalized
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and all its values are equally probable, then the value of
a is zero (absence of coherence). One should not, how-
ever, confuse the parameter « with the visibility of fringes
obtained in a single realization of the experiment which
can give rise to a well-defined interference pattern even
if the initial state is not coherent. The parameter « cor-
responds instead to an average taken on several measure-
ments and is consequently an intrinsic property of the state
of the system. This distinction is crucial if one considers
interference experiments with two condensates. A simi-
lar structure characterizes also the fringes of the density
distribution measured after expanding the condensates [1].
In this case, in order to obtain a simple result, one has to
make the additional assumption that the condensates do not
interact with each other when they overlap. For long ex-
pansion times ¢, the phases of the two condensates evolve
according to the law (r + d/2)*m/ht [10] so that the full
density profile takes the following asymptotic form:

n(r,t) = [mr +n_ + 2« c0s<m7d tx>\/n+n_}, @)

where n+ = no(r * d/2,1) are the densities of the two
expanding condensates. Equations (5)—(7) show that the
value of & can be inferred from either the measurement
of the momentum distribution and/or of the density profile
after expansion, although in the second case the conditions
of applicability of Eq. (7) are more severe.

The Josephson Hamiltonian (4) has been the object of
many theoretical studies in different physical contexts (see,
for example, [11]), so we will focus here only on some fea-
tures which are relevant for our Bose-Einstein condensed
systems. Let us first recall the behavior of the ground
state. In the limit of strong tunneling Ec/E; << 1 the sys-
tem undergoes small oscillations around the equilibrium
value @ = 0 and the Hamiltonian becomes quadratic in
®. In this limit the fluctuations of the phase are given by
(AD?) = (VE¢/E;)/2 < 1 and are, hence, small. One
can consequently regard the inequality Ec/E; << 1 as the
physical condition for applying the classical GP theory
to the problem of the double well potential and, conse-
quently, to treat the systems as a globally coherent object
described by a unique order parameter. Also, the fluctua-
tions of k in the ground state can be easily calculated and
one finds the result (Ak?) = (\/E;/Ec)/2 > 1. Notice,
however, that, if (A®?) is of the order of 1/N or smaller,
the formalism developed above is no longer adequate and
should be improved through both the inclusion of the fac-
tor /1 — 4k2/N? in the term —E; cos® of the Joseph-
son Hamiltonian (4), and a more microscopic approach to
the phase operator (see, for example, [12] and references
therein). In the following we will mainly limit our dis-
cussion to the case E¢c > E;/N? which ensures that the
quadratic fluctuations of the phase are in any case larger
than 1/N.

In the case of weak tunneling Ec/E; >> 1 the behavior
of the fluctuations is very different. The Josephson term
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E; entering the Hamiltonian (4) can be neglected in first
approximation, and the wave function of the ground state
is simply a constant given by 1/+/27, showing that the
relative phases between the two condensates is distributed
in a random way. At the same time, the fluctuation of
the relative number k of atoms in the two traps becomes
smaller and smaller and vanishes similar to 2(E;/E¢)>.
In the same limit the coherence factor vanishes similar to
a — 2(E;/Ec). In the weak tunneling limit the ground
state of the system exhibits fragmented Bose-Einstein con-
densation and is characterized by the macroscopic occupa-
tion of the two single-particle states localized in the two
wells.

In Fig. 1 we show the coherence factor & as a func-
tion of the ratio Ec/E; calculated by solving explicitly
the Schrodinger equation for the ground state with the
Josephson Hamiltonian (4). The figure shows that for
values of E; smaller than E¢ the coherence factor is
significantly quenched, pointing out the occurrence of
a continuous transition to the number-squeezed regime.
The transition is accompanied by a change of the lowest
excitation energy w, of H; from the classical value (3)
to the “free” value Ec/2h which is obtained by setting
E; = 0in (4). An accurate expression for the lowest exci-
tation frequency is provided by the ratio hza)[z, = m3/m
between the cubic (ms = ([k,H,],[A,,[H;,k]]])
and energy weighted (m; = ([k,[H,,k]])) sum rules,
relative to the operator k = —id/o®. These sum
rules are easily calculated by employing the com-
mutation  relations [H;,d/d®] = —E;sin®  and
[A,sin®] = —Ec(3/d® cos® + cos®d/dd)/2 hold-
ing for the Hamiltonian (4). One then finds m; =
E;{cos®) and m3 = E5E{cos®?) and the result,

1 / (cos2®d)
“r T EjEc (cos®) ’ ®

0.1

FIG. 1. Coherence factor a at zero temperature as a function
of the ratio E¢/E;.
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for the excitation frequency, where the averages should be
evaluated on the ground state of the Josephson Hamilto-
nian. In the limit Ec < E;, one has (cos’®) = (cos®) =
1 and one recovers the classical result (3). In the opposite
limit, one finds (cos®?) = 1/2, {cos®) = 2E;/E¢, and
w, = EC / 2h.

Thus far we have investigated the problem in an
ideal situation at zero temperature. Because of the
smallness of the plasma frequency (3) it is important
to understand the role of the thermal fluctuations of the
relative phase of the two-condensate system. These are
expected to become important as soon as the temperature
is of the order or higher than /iw,. To investigate the
thermal effect, we have calculated the thermal average
a(T) = Zn a,expl—E,/T]/ Zn exp[—E,/T] of the
coherence factor, where n and E, are the eigenstates
and eigenenergies of the Josephson Hamiltonian (4),
a, = (n|cos®|n) are the corresponding quantum aver-
ages, and we have set the Boltzmann constant equal to 1.
The results are presented in Fig. 2 as a function of the
parameter T/E; for two different values of Ec/E;. At
T = 0, one recovers the values of a given in Fig. 1. One
clearly sees that even if quantum effects are small the
thermal decoherence of the phase becomes important at
temperatures of the order T ~ E;. The solid line in the
same figure gives the classical prediction,

fJ_rZ dD cos® exp[E; cosd/T]
f:: d® explE; cos®/T]

aq(T) = . O

holding for T > w,. If T < Ej, Eq. (9) gives the result
(A®?) = T/E; < 1 for the classical fluctuation of the
phase. The fluctuation of k can be also easily calculated
starting from the classical expression (2), and one gets the
result (Ak*) = T/E¢ for any value of T. The thermal
fluctuations of k may be large and consequently at finite

FIG. 2. Coherence factor « as a function of the ratio T/E;
for Ec/E; = 3 (a), Ec/E; = 1 (b). The classical curve (9) is
also shown (c).
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T the system will not in general exhibit the phenomenon
of number squeezing, even if the condition E; <K E¢ is
satisfied.

It is useful to discuss the relevant scale of energies and
temperatures in a specific example. Let us consider a
system of 10% atoms per well and the value u = Shwy,
for the chemical potential. The coupling constant E¢ is
about 5 X 103 fiw,. By choosing E; = fiwp,, one has
w, ~ 0.1wp,. With the above choices both the conditions
w, K wp, and Ec > E; /N? needed to apply the for-
malism developed above are well satisfied. At 7 = O the
system is practically coherent (a = 1) since E¢c < Ej.
However, if T is of the order of the oscillator energy fiwp,,
which corresponds to a rather low temperature in standard
experiments, the coherence is partially lost because of ther-
mal effects. By changing the value of E; and/or T, one
can clearly explore other interesting regimes.

The Josephson effect with two condensates can be natu-
rally extended to an array of multiple wells. This extension
is particularly relevant because of the recent experimental
efforts to investigate one-dimensional optical lattices [4].
The array of condensates confined in multiple wells is de-
scribed by the multiple-condensate Hamiltonian,

1 N, (:)2 Nil
By = ——Ec — — Ey cos(Py11 — Py),
4 &= (")q)]% =1

(10)

where Nj is the number of wells, @y is the phase of the kth
condensate, and E¢, E; are the parameters characterizing
the double well Hamiltonian (4). In the large N, limit, the
one-dimensional Hamiltonian (10) is known to exhibit a
phase transition at zero temperature occurring at the criti-
cal value Ec = 1.62E; [13]. The “superfluid” phase is
not accompanied by the appearance of an order parame-
ter and cannot be described in terms of mean-field theo-
ries. It is instead characterized by an algebraic decay of
the phase correlation function (cos(®, — ®,)) at large dis-
tances |k — I| > 1 (quasi-long-range order). The decay
becomes exponential for Ec > 1.62E;. The phase transi-
tion disappears at finite temperature. Actually in the “clas-
sical” regime of high temperatures the phase correlation
functions can be evaluated analytically and one finds the
simple result,

(cos(@ — D)) = alh ", (11)

which exhibits an exponential decay for large values
of |k —1|. In Eq. (11) a is the classical value (9)
calculated for the double well problem. Result (11) can
be used to evaluate the momentum distribution n(p)
of the array. By taking the Fourier transform W(p) =
(27 h) =32 [dr W(r)exp[—ip - r/h] of the order param-
eter V(r) = Ziv;l W, (r)e’® and using the relationship
Y, (p) = V(p)expl—i(k — j)p.d/h] following from
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the translational invariance properties of the array, one
finds the result,

n(p) = no(p) > e €I/ Mcos(d) — @)y,  (12)
k,l

2
l—acl

1 + a% — 2aqcos(ped/h)’

= N,no(p) (13)

where no(p) is the momentum distribution of each conden-
sate, d is the distance between two consecutive conden-
sates and, in deriving the last identity, we have assumed
Ng > 1(1 — ). Result (13) explicitly points out the
effects of coherence. When cos(p,d/h) = 1 the incoher-
ent signal Nyny(p) is amplified by the factor (1 + a;)/
(1 — a). Vice versa, when cos(p.d/hi) = —1 the sig-
nal is suppressed by the factor (1 — a.)/(1 + ag).

In conclusion, we have investigated the consequences
of the quantum and the thermal fluctuations of the phase
on the coherence phenomena exhibited by Josephson-like
configurations. Thermal effects are predicted to play a
major role even at very low temperatures and should be
consequently taken into account in order to control the
transition to the new quantum phases exhibited by these
ultracold Bose gases.
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