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We investigate the flow properties of a 2D foam (a confined monolayer of jammed bubbles) submitted
to a continuous shear in a Couette geometry. A strong localization of the flow at the moving inner
wall is evidenced. Moreover, velocity fluctuations measurements reveal self-similar dynamical structures
consisting of clusters of bubbles moving coherently. A stochastic model is proposed where bubbles
rearrangements are activated by local stress fluctuations produced by the shearing wheel. This model
gives a complete description of our observations and is also consistent with available data on granular
shear bands.
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Disordered systems, such as foams, concentrated emul-
sions, slurries, or granular materials, exhibit rheological
properties that cannot be understood within the scope of
standard solid or liquid mechanics [1–3]. For such sys-
tems, thermal energies are orders of magnitude lower than
the typical energy required to relax the structural arrange-
ments of their components; under small forces, the ma-
terial remains trapped in a metastable configuration and
exhibits a solidlike behavior. However, when submitted
to a large enough stress, it can be driven through a series
of new metastable configurations, giving rise to a macro-
scopic flow. But the resulting flow field may still differ a
lot from what would be expected for a molecular liquid.

Dry sand slowly flowing down an hour glass provides a
simple example of such abnormal flow behaviors: the flow
splits into a pluglike central region and a strongly sheared
thin layer at the wall — a few particles wide—where most
of the dissipative process occurs [4]. This spontaneous
localization of the strain in narrow regions (the so-called
shear bands) can be observed in many other situations such
as shear, surface or convective flows for instance [5–8].
Shear banding actually controls most of the practical
situations encountered in soil mechanics and industrial
handling of grains, and is also relevant to pyroclastic
flows in geology (for a review on granular matter, see [9]).
This question has recently received a lot of attention from
physicists, both theoretically and experimentally [10,11],
but a clear picture has not emerged yet.

By contrast, the possibility of shear banding in foams
has been mostly ignored in the literature, and numerical or
theoretical studies usually assume shear flows in foams to
be uniform [2,12]. The assumption that shear banding is
unique to granular matter can be misleading because it sug-
gests that some peculiar aspects of granular flows, such as
solid friction, particle rotation, or dilatancy, are essential.

In this Letter, we report the formation of shear bands
in aqueous foams. We believe that foams may shed light
on the dynamics of granular systems by evidencing the
minimal set of ingredients needed to get shear banding.
To that extent, foams constitute a much simpler model
than granular systems since the basic bubble/bubble in-
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teractions which control the mechanical properties of the
material are well known: elastic (stored) energy is related
to an increase of the total interfacial area when the bubbles
are distorted, whereas dissipated energy is associated with
neighbors swapping events (T1 processes) inducing flows
in the liquid films and vertices (for a review on foams,
see [13]).

In order to probe the microdynamics of the foam, one
needs to track the trajectory of each bubble. Since 3D
foams are inherently diffusive to light, we used a 2D model
foam— a confined monolayer of bubbles—submitted
to a continuous slow shear in a wide-gap Couette geome-
try. The setup was composed of an inner shearing wheel
and an outer ring (of respective radius R0 � 71 mm and
R1 � 122 mm) confined between two transparent plates
separated by a 2 mm gap. To produce the foam, the cell
was first held vertically and partially filled with a known
volume of soap/water solution. Bubbles were formed by
blowing nitrogen gas through two small injection holes at
different flow rates until the resulting foam reached the
top of the cell. Once set horizontally, the foam rapidly
attained a uniform wetness characterized by its liquid
fraction 0.01 , f , 0.3 (Fig. 1). This foaming proce-
dure was chosen because it produces bidisperse disordered
foams and therefore eliminates crystallization. The mean
diameters within each of the two populations of bubbles
were of the order of 2 and 2.7 mm, with a mean deviation
of 0.2 mm. These bubbles were large enough compared
to the gap height so that they would not overlap. To define
a bubble scale, we measured the mean distance d between
first neighbors in the foam. We kept 2.1 , d , 2.5 mm
so that the gap between the wheel and the ring could
accommodate from 20 to 25 rows of bubbles. The distance
d was evaluated several times during the experiment and
found to be almost constant. Coarsening would eventually
lead to a growth of the biggest bubbles at the expense of
the smallest ones but over a longer time. We also checked
the absence of shear induced size segregation that might
have occurred during the experiment.

Shearing was induced by rotating the inner wheel at
constant velocity Vwheel using a stepper motor. To avoid
© 2001 The American Physical Society 178305-1
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FIG. 1. Close-up frames of dry and wet 2D foams under
continuous shear. The shearing wheel appears in black. Arrows
indicate the inner wheel direction of rotation. (A) A dry bidis-
perse foam (f � 0.05), showing deformed polygonal cells.
(B) A wet bidisperse foam (f � 0.20). The bubbles are
circular and undeformed. (C) System of coordinates used to
analyze the flow field.

slippage at the wheel and the ring, their sides were tooth
shaped so that the first and last rows of bubbles would re-
main irreversibly attached to the walls. To eliminate tran-
sient effects, we ran the experiment a full round before
taking data. The motion of 1000 to 1500 bubbles was then
recorded using a CCD digital camera positioned over the
setup. In a typical experiment, 3000 images were taken
corresponding to a total displacement of 600d of the wheel
edge. The apparent centers of mass of the bubbles were
subsequently tracked by image analysis (IDL software).
To reduce the effect of the viscous friction between the
bubbles and the confining plates, we restricted our study
to quasistatic flows. We focused on average velocity mea-
surements as a probe of shear rate dependence: we found
that in the range 0 , Vwheel , 0.7 mm ? s21, the veloc-
ity profiles were similar apart from an overall scale factor.
All experiments were performed in the quasistatic regime
at Vwheel � 0.25 mm ? s21. In the following, all velocities
and distances are normalized by Vwheel and d, respectively.
We note v0 � Vwheel�d the characteristic frequency of
the shear.

Figure 2(A) shows the decay of the average tangential
velocity �yu�r�� with the distance r to the shearing wheel
for different liquid fractions f [see Fig. 1(C) for variables
definition]. Averaging was performed over the tangential
coordinate ru and time t, yielding smooth and reproducible
profiles, although the instantaneous flow is strongly in-
termittent. The reduced velocity is found to approach 1
at r ! 0 confirming the absence of slip at the edge of
the wheel. At larger r, the profiles exhibit an exponen-
tial decay

�yu�r�� � exp�2r�l� , (1)
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FIG. 2. Average tangential velocity profiles for different liquid
fraction (�: f � 0.05; �: f � 0.12; ≤: f � 0.20), showing
exponential decays with a width l�f�. The small plateau for
0 , r , 1 corresponds to the first row of bubbles being at-
tached to the shearing wheel. Inset: Dependence of l on liquid
fractions f (the line is just a guide for the eyes). Two plateaus
can be distinguished on either side of f� � 0.12, which sepa-
rate polygonal and circular bubbles regimes.

with a width l depending on f. The curve l versus
f, presented in Fig. 2 (inset), shows two plateaus at low
and high volume fraction. The transition between these
two regimes occurs around f� � 0.12, which qualitatively
marks the limit between dry foams with polygonal bubbles
for f , f� and wet foams with circular bubbles for f .

f�. In both cases, the rapid decay of the mean velocity
over a few bubble diameters establishes the existence of
shear banding in foams. The exponential shape of the
velocity profile, observed in all experiments, appears as
a robust feature which was also observed in comparable
experiments performed on 2D granular materials [4,5,14].

Beyond these time averaged profiles, our setup allows
measurements of the short time scale fluctuations of
the bubbles velocities. A mere observation of the video
sequences reveals brief oscillations of clusters of bubbles
of various radial extension, rotating together as rigid
bodies as shown in Fig. 3. These dynamical structures are
ephemeral and disappear after the wheel edge has moved
by roughly one bubble diameter (this was checked by
measuring time correlations of the velocity which decay to
0 in a time of order 1�v0). To quantitatively probe these
coherent moves, we studied the spatial correlations of the
instantaneous velocity field. We focused on the radial
component yr which has a zero time average and therefore
gives a better signal to noise ratio (qualitatively, similar
results were found when using yu 2 �yu � instead of yr ).
Figure 4(A) shows the correlation function gr �Dru� �
�yr �r, ru� ? yr �r, ru 1 Dru����y2

r �r�� for different values
of r from 1 to 10, at a volume fraction f � 0.20.
Regardless of r, gr decreases with Dru from 1 to a
negative value then slowly relaxes to 0. The length j�r�
178305-2
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FIG. 3 (color). Video frame of the foam with the position of
the bubbles centers and their trajectories over the last 20 sec.
This time period corresponds to a total displacement of one
bubble diameter for the first row (or equivalently for the inner
disc edge). The dots size and lines color reflect the total distance
traveled by the bubbles revealing a large rotating cluster.

for which gr reaches 0 defines a typical correlation length
of the velocity field at distance r. In Fig. 4(B), ru has
been rescaled by r. All curves then collapse on a single
one, which demonstrates a linear increase of j�r� with
the radial distance r: j�r� � ar. Motivated by the
observation of oscillating clusters, we modeled the flow
field as a superimposition of rotating blocks of bubbles of
various sizes (see figure caption for details) which allowed
us to obtain a good fit of the master curve [Fig. 4(B)].
Similar results were obtained at all volume fractions, and
the coefficient a was found to decrease with f.

It should be noted that the velocity field which yields
the measured correlation functions mainly corresponds to
reversible moves and thus probes the elastic deformation
of the foam rather than the plastic flow. The quantityp

�v2
r ���vu� provides a good estimate of the ratio of re-

versible to irreversible moves. This quantity is larger than
1 beyond the first attached row of bubbles, and gets larger
than 10 beyond the fifth row. The correlation measure-
ments thus reveal that the instantaneous stress field is spa-
tially correlated.

This peculiar characteristic of the foam deformation
field can actually be understood under the scope of lin-
ear elasticity, by modeling the foam as an isotropic elastic
medium. In the following, we neglect the radial geome-
try of the experiment (the wheel radius being much larger
than the shear band width) and thus assume parallel shear.
During the initial loading, a uniform mean shear stress s

builds up in the material. In the steady state, this uniform
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FIG. 4. (A): Spatial correlations of the radial velocity for dif-
ferent radial distances r from 1 to 10 (f � 0.15). (B): All
correlations can be collapsed on a single curve when plotted
versus the tangential distance rescaled by r . To fit this mas-
ter curve, we assume that the radial velocity yr �r, ru� at dif-
ferent r comes from the rotation of clusters of mean lateral
extension j�r� proportional to r �j�r� � ar	. The radial ve-
locity field within a cluster of size m is idealized by a two
step function (yr � ey0 for 2m , ru , 0 and yr � 2ey0 for
0 , ru , m with e � 61). We postulate a statistical distribu-
tion of m around j�r� by assuming that the fraction of clusters of
size larger than m is exp�2 m

j�r� � . The resulting correlation func-

tion (dotted line) then reads gr�Dru� � �1 2
Dru

ar � exp�2 Dru

ar �.

stress persists in average but is locally modulated by a fluc-
tuating stress field Ds�t� of mean value 0 associated with
the continuous rubbing of the wheel teeth. At each location
�r � 0, ru � i� on the wheel edge, the foam is indeed sub-
mitted to a localized perturbative stress Dsi�t� of variance
s0 � �Ds

2
0 � varying at a frequency v0 which elastically

propagates into the material. These multiple noise sources
add up to produce a stress fluctuation at a position �r , ru�
of amplitude (see, for instance, [15]):

Dsr�ru , t� �
X

i

Dsi�t�p
r2 1 �ru 2 i�2

. (2)

Assuming the noise sources to be uncorrelated [�Dsi�t� 3

Dsj�t�� � 0 for i fi j], the resulting stress coherence
length, at distance r, takes the form j�r� � ar, in
agreement with our experimental findings. We interpret
the different observed values for a as a signature of the
anisotropy of the foam due to its initial loading. This is
consistent with the observation of large values of a for
the driest foams where the largest uniform deformation is
first produced. From Eq. (2), we are also able to compute
the variance of the fluctuating stress Dsr �t� as

�Ds2
r � � s�r� �

s0

ar
. (3)

We now relate the fluctuating stress field Dsr �t� to the
average flow profile by taking into account the foam plas-
ticity. Our approach mostly follows a model proposed by
Pouliquen and Gutfraind [4] based on Eyring’s activated
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process theory [16] to describe chute flows of granular ma-
terials. In the present description, the variance of the local
stress fluctuation s�r� plays the role of a temperature al-
lowing plastic flow to occur. The moving boundary acts
as a “hot wall,” exciting internal deformation modes in the
form of self-similar rotating clusters. When the fluctuat-
ing stress overcomes a certain yield value sy , the structure
plastically yields. The yielding rate in the material by unit
of time and space thus writes v � v0P�s . sy�, where
P�s� is the density probability of stress. The stress at a
distance r is a sum of �r random variables [see Eq. (2)]
so that P�s�r�	 is a Gaussian distribution centered on s of
variance s�r�. Using Eq. (3), the yielding rate at a distance
r reads

v�r� � v0P�s�r� . sy	 � v0

µ
1 2 erf

r
r
l

∂
, (4)

with

l �
1
a

2s0

�sy 2 s�2 . (5)

Each failure increments the average velocity gradient by
1 in reduced unit, so that the constitutive equation for
the flow writes ≠�yu�r��

≠r � 2v�r��v0 with the boundary
conditions �yu�0�� � 1 and �yu �`�� � 0. A very good
approximate function to the integral of v�r� is given by
a pure exponential so that �yu�r�� � exp�2r�l� in good
agreement with our experimental findings.

In conclusion, we have observed shear banding in dry
and wet 2D foams under continuous slow shear and we
have probed the associated elastic deformations of the
foam, characterized by brief, collective oscillations of self-
similar blocks of bubbles. We have developed a stochastic
model which relates the plastic flow to the stress fluctua-
tions. The main characteristics of the flow (rapid decay of
the average velocity over a few bubbles, large velocity fluc-
tuations) are very similar to what is commonly observed in
granular systems, suggesting that the proposed mechanism
could remain valid for granular systems. As already men-
tioned, the predicted exponential velocity decay has been
observed in various 2D granular shear bands [4,5,7]. More-
178305-4
over, the velocity profile in 3D has been shown to obey a
Gaussian decay in the limit of disordered and nonspherical
grains [6]. This functional form for the velocity profile im-
mediately follows from the modification of Eq. (3) in 3D
which then writes s�r� � s0

a2r2 yielding a Gaussian decay
for �yu�.
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