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Molecular and Continuum Boundary Conditions for a Miscible Binary Fluid
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We show that molecular-dynamics simulations can furnish useful boundary conditions at a solid surface
bounding a two-component fluid. In contrast to some previous reports, convective-diffusive flow is con-
sistent with continuum equations down to atomic scales. However, concentration gradients can produce
flow without viscous dissipation that is inconsistent with the commonly used Navier slip condition. Also,
differential wetting of the two components coupled to a concentration gradient can drive convective flows
that could be used to make nanopumps or motors.
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Hydrodynamic theories of flow past a solid surface need
to assume boundary conditions for the fluid velocities at
the surface. Such interfacial behavior is often very dif-
ficult to access experimentally. Recent simulation stud-
ies of fluids have revealed a range of boundary conditions
for single component fluids and related them to the micro-
scopic interactions [1,2]. However, there are many prob-
lems where the appropriate boundary conditions are still
in doubt. These include flow near a moving contact line,
the liquid crystal order parameter in the presence of flow,
and convective-diffusive flow of miscible fluids.

In a recent Letter [3], Koplik and Banavar studied two
fluids that individually obeyed a “no-slip” boundary con-
dition at the surface. In a mixture of these fluids, they
found that the velocities of each component still vanished
at the wall. They concluded that the boundary condi-
tion accompanying the convective-diffusive transport of
a binary fluid mixture demands that the velocities of the
two species be equal at the wall. It was subsequently
pointed out [4] that this boundary condition contradicts
Fick’s law of molecular diffusion, at least in its usual
form where the diffusion coefficient is assumed to be
position independent. Two possibilities were suggested:
the first [4] that the convective flows studied in Ref. [3]
were large enough to mask the effect of diffusion, and
the second that the continuum equations need to be modi-
fied near the surface in order to obtain consistent results
[4,5].

In an attempt to resolve this issue, Brenner and Ganesan
[6] undertook a singular perturbation analysis. A contin-
uum inner region with a refined form of Fick’s law on
which the no-slip condition applies for both components
was asymptotically matched to an outer region which fol-
lows the standard form of Fick’s law. As the details of the
refined form of Fick’s law are still somewhat ambiguous,
Brenner and Ganesan conclude that “simulations purport-
ing to derive” boundary conditions “by direct probing of
those molecules near the wall will necessarily give rise to
erroneous macroscale conclusions.” Essentially, they ar-
gue that the simulations are useless since they do not give
the information necessary to match up to the known equa-
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tions for bulk fluids. If true, this would be a very disap-
pointing situation.

In this paper we examine flow boundary conditions for
binary fluid mixtures using molecular dynamics simula-
tions in the regime where diffusive flow is either domi-
nant or on the same scale as the convective flow. We find
bulk flow consistent with Fick’s law within one molecular
diameter from the wall, and appropriate boundary condi-
tions for the known equations of bulk fluids are readily
obtained. If concentration gradients are present, the indi-
vidual velocities of the two species are not equal at the
wall. More surprisingly, we find that density gradients can
lead to a net flow without viscous dissipation. We also find
that the coupling of wetting potentials with concentration
gradients can give rise to Marangoni-like convective flow
that could be used to make nanopumps or nanomotors.

We consider a mixture of two types of molecules, la-
beled a and b, in a slit geometry similar to that used for a
single fluid in Ref. [1]. There are two walls, at z � 0 and
z � L, and periodic boundary conditions in the x-y plane.
The walls contain type w atoms fixed to lattice sites form-
ing two �111� layers of an fcc surface. The interactions
between atoms of type i and type j separated by a dis-
tance r are modeled using a Lennard-Jones (LJ) potential,
Vij�r� � 4eij��sij�r�12 2 �sij�r�6�, where eij specifies
the interaction energy and sij the interaction length. Their
averages are denoted by e and s, respectively. A charac-
teristic time scale is given by t � s�m�e�1�2, where m is
the average of the molecular masses mi. Unless specified,
the force is truncated at rc � 2.2s to improve computa-
tional efficiency.

To obtain a steady-state concentration gradient, we arti-
ficially construct a direction dependent osmotic membrane
at x � 0. The membrane is less than one s thick, and
preferentially transmits atoms of type a from left to right
and conversely for atoms of type b. In a typical simula-
tion, we wait 5000t for the steady-state concentration gra-
dient to establish itself, and then average over a subsequent
15 000t to 150 000t to collect data. Note that these time
scales are more than an order of magnitude greater than
in Ref. [3], thus allowing much greater sensitivity. Most
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channels studied had L � 16.4s, but we have also found
similar results for systems twice as wide.

The diffusive flux Jj of particles of type j,

Jj � rj�vj 2 v� , (1)

is defined [7] relative to the barycentric, or mass aver-
aged, velocity v � �

P
i rivi��r, where ri is the position-

dependent mass density of species i, and r �
P

j rj is the
total mass density. Fick’s law relates the diffusive flux to
the gradient of the concentration cj � rj�r [7],

Jj � 2rD=cj , (2)

where D is the diffusion constant. The results of
Refs. [3–6] suggest that there may be a macroscopic layer
where the diffusion constant depends on proximity to
the wall.

For simplicity, we first consider a system where
sij � s for all interactions and ma � mb � m. All fluid-
fluid eij � e, and the wall-fluid coupling ewf � ewa �
ewb is varied. In this case, entropy is the only driving
force. Figure 1(a) shows the resulting steady-state den-
sities rj of the two species. Both vary linearly and the
total density is constant throughout the system. Since a
and b particles have equal and opposite concentration
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FIG. 1. (a) Density of fluid particles of type a (�) and type b
(�), and total density (�). The osmotic membrane is located at
x � 0. The periodic cell dimensions along the x and y directions
are 42.5s and 12.3s, respectively. (b) Diffusion constant for
ewf�e � 1.0 (�), 0.3 (�), and 0.1 (�). We normalize by the
bulk diffusion constant, Db � 0.068s2�t, measured in a system
without walls. Away from the osmotic membrane, the value of
D is independent of x and y.
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gradients, we find that their fluxes are equal and opposite
and v � 0. If the difference between individual velocities
vanished at the wall, as in Ref. [4], both fluxes would
have to vanish there. Figure 1(b) illustrates that the fluxes
may actually increase at the wall. To eliminate variations
with x, we plot D � yx,j�cj�≠xcj� as a function of height
z for three different wall-fluid interaction strengths. The
diffusion constant, and thus the flux, goes down near the
wall for ewf�e � 1.0, remains constant for ewf�e � 0.3,
and goes up for ewf�e � 0.1. Thus, for ewf�e � 0.1, the
difference between the individual velocities of the two
species is actually highest at the wall. The value of D
is normalized by the bulk diffusion constant which was
calculated for a system where the walls were replaced by
periodic boundary conditions in the z direction. As can be
seen, there is no statistical difference from bulk diffusion
at distances more than about one molecular diameter from
the wall. Thus, in contrast to Refs. [3–6], there is no need
to supplement Fick’s law with a continuum boundary
layer which obeys a modified constitutive relation.

Earlier work [1,2] on single component LJ fluids is well
described by the Navier boundary condition, which as-
sumes that the velocity difference between solid and fluid
is proportional to the viscous shear stress. For our geome-
try this implies

yxjwall � Ls≠zyxjwall , (3)

where Ls is called the slip length. A larger value of Ls

implies less drag at the interface, and we find that it corre-
lates with greater diffusion at the wall. In most cases, the
slip length has atomic dimensions [1,2], and it is less than
2s for single fluids with the walls considered here.

The Navier condition presupposes that, in the purely
diffusive case, where ≠zyx � 0, the barycentric veloc-
ity vanishes identically. However, Fig. 2(a) shows that
this is not necessarily the case. For this simulation the
masses were changed to ma � 0.75m and mb � 1.25m
and ewf�e � 1.0. We find that the number densities Ni

are the same, within statistical errors, as those of Fig. 1(a)
and the mean velocities of each species are also unchanged.
However, due to the mass difference, there is now a mass
density gradient and a small net mass flux J � rv along
the channel [Fig. 2(a)]. One might wonder if the Navier
condition still applies, but with a very small velocity gra-
dient and very large slip length. However, both single and
two-component simulations of purely convective flow for
the same parameters yield “stick” boundary conditions,
i.e., the effective “wall” position is inside the fluid and
Ls is essentially zero. Moreover, there is no measurable
viscous stress and the entire flux profile follows from a
general continuum relation that we now describe.

For the example of Fig. 2(a), the mean molar velocity
vm � �

P
i Nivi��N vanishes, where Ni is the molar den-

sity of component i and N �
P

i Ni . Using the definition
of the diffusive flux [Eq. (1)], and Fick’s law [Eq. (2)], one
can show that
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FIG. 2. (a) The observed mass flux J � ryx (�) and that
predicted J � 2D≠xr (�) by Eq. (4) for vm � 0. (b) Mass
density of fluid particles of type a (�) and type b (�), and
total density (�). (c) The mass flux normalized by the mean
density r0, yay

x � ryx�r0. (d) Mean molar velocity versus
≠2

xr�≠xr for different osmotic walls. The line is a linear fit
giving D � 0.067 6 0.004s2�t.

v � vm 1 D=�ln�N�r�� . (4)

Thus, the barycentric and molar velocities differ when
there is a diffusive flow driven by a gradient in a total den-
sity (N or r). In the case considered in Fig. 1, the total
densities are constant and both v and vm vanish every-
where for purely diffusive flow. For the case of Fig. 2(a),
vm vanishes and N is essentially constant. Thus Eq. (4)
implies J � rv � 2D=r. The dotted line in Fig. 2(a)
shows that this expression reproduces the observed mass
flux. Note that the height dependence comes entirely from
the variation in D that is also evident in Fig. 1(b). If
smaller values of ewf�e are used, the flux may actually
increase at the wall. This leads to different signs on the
two sides of Eq. (3).

The observed failure of the Navier condition has im-
portant consequences. Numerous arguments related to the
theory of diffusive flow, such as those in Ref. [8], rely on
the Navier condition to enforce a vanishing barycentric ve-
locity in the absence of diffusion. The conclusions of this
literature need to be reexamined. One may wonder whether
the correct boundary condition for purely diffusive flow is
the identical vanishing of some other mean velocity such
as vm. However, it is easy to construct exceptions to such
ansatzes. The difficulty with such boundary conditions is
most readily seen by considering steady-state situations.
Steady state implies that ≠tr � ≠tNi � 0 and the corre-
sponding continuity equations then imply that

≠a�rya� � ≠a�Nym
a � � 0 . (5)

Multiplying Eq. (4) by N and taking the divergence yields
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≠a�Nya� � ≠a�Nym
a � 1 ≠a�ND≠a�ln�N�r��� . (6)

Rewriting ≠a�Nya� as ≠a��N�r� �rya�� and making use
of Eq. (5), one can easily obtain

ya≠a�N�r� �
1
r

≠a�ND≠a�ln�N�r��� . (7)

An analogous relation for the mean molar velocity can
easily be derived:

ym
a ≠a�r�N � �

1
N

≠a�rD≠a�ln�N�r��� . (8)

Thus, the continuum relations themselves place constraints
on mean velocities. Any additional requirement that a
mean velocity vanish imposes constraints on the gradients
of the density. While these may be consistent with some
situations, they will, in general, overspecify the problem.

We have tested the above equations with simulations us-
ing a range of atom sizes and masses. To illustrate their
application, we use the parameters for Fig. 2(a), but adjust
the probability of reflection at the osmotic wall to produce
different net average mass flows down the channel. Typi-
cal examples of the resulting steady-state mass density and
flow profiles for ewf�e � 0.3 are shown in Figs. 2(b) and
2(c). Neither the barycentric nor the mean molar veloc-
ity vanishes. Indeed, they are independent of height at
distances more than a molecular diameter from the wall.
We find that the mean molar density N is independent
of x, and that only the x components of the velocity are
nonzero. Thus, Eq. (8) simplifies to ym

x � D≠2
xr�≠xr.

The spatially averaged ym
x versus ≠2

xr�≠xr for several dif-
ferent osmotic boundary conditions is shown in Fig. 2(d).
We find a good fit to a straight line whose slope D �
0.067 6 0.004 agrees with the value D � 0.070 6 0.004
found directly from Fick’s law [Eq. (2)].

It is clear from the above examples that for multicom-
ponent fluids the Navier condition must be modified by
subtracting the diffusive flow from the left-hand side of
Eq. (3). We find that simulations of a variety of convective-
diffusive flows can then be fit with a common value of the
slip length [9].

Thus far, we have examined only neutral wetting where
both a and b have the same interaction with the walls.
In many realistic cases, one component will preferentially
wet the wall. To examine this situation, we return to the
case where the two particles are indistinguishable except
for their labels. For particles a �b� we now change the
wall-fluid interaction at the top (bottom) wall so that it
is purely repulsive by truncating the potential at its mini-
mum rather than at 2.2s. Recall that previously for this
fluid we found that all average velocities were zero. Fig-
ure 3(a) shows the average velocity produced by changing
the wetting properties. One sees a remarkably strong shear
flow (	m�s) with significant “slip” at the stationary walls.
This slip has the wrong sign for the Navier condition and
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FIG. 3. (a) Barycentric velocity down the channel for a case
where the wall at z � 0 preferentially wets a and the other
wall preferentially wets b. (b) Mass fraction ca � ra�r versus
height evaluated at planes 1�4 (�) and 3�4 (�) of the way along
the channel in the x direction. (c) Surface tension along the top
(�) and bottom (�) walls.

its magnitude is inconsistent with results for convective
flows.

The driving force for the flow in Fig. 3(a) comes from
the externally imposed concentration gradient and the
variation of the interfacial free energy of the walls with
concentration. Figure 3(b) shows the mass fraction ca

at different cross sections along the channel. As can be
seen from the figure, along the walls the system prefers
the more strongly wetting fluid species. The difference
between the concentration at the wall and in the center
of the channel increases with x. This increase leads to a
rise in interfacial tension. Values of the surface tension g,
calculated using the mechanical definition of Kirkwood
and Buff [10], are shown in Fig. 3(c). The boundary
condition relating the shear stress on the wall sxz jw to the
viscous stress in the fluid sxz jf is analogous to that used
for Marangoni flow at a two fluid boundary [11]:

sxzjw 2 sxz jf � ≠xg . (9)

It can be shown [9] that there is also a velocity discontinu-
ity given by an integral of the Marangoni stress over the in-
terfacial region that produces the slip in Fig. 3(a). This can
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be incorporated into a generalized Navier slip condition by
adding a source term proportional to ≠xg. These bound-
ary conditions determine the net stress on the wall. The
result is consistent with stresses measured directly in our
simulations, and ranges from 50% to 75% of ≠xg (	Mpa)
for the cases we have studied. This force could be used
to drive a nanomotor. We have also constructed systems
where both the top and the bottom walls prefer the same
component. In this case, one generates Poiseuille-like flow
which could be used in a nanopump.

In conclusion, we find that the flow boundary condi-
tion for convective-diffusive flow is not one of equal ve-
locities for all species. In addition, average velocities do
not, in general, vanish at the wall in the absence of vis-
cous stress. Diffusive mass transport can contribute to a
significant average velocity at the wall. Further, the pres-
ence of concentration gradients along the wall in the gen-
eral case of non-neutral wetting can result in significant
Marangoni-type forces which drive convective flow. These
effects should be readily applicable to the design of new
microfluidic devices and may be relevant to the function
of numerous biological systems.
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