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The problem of distinguishing two unitary transformations, or quantum gates, is analyzed and a func-
tion reflecting their statistical distinguishability is found. Given two unitary operations, U1 and U2, it is
proved that there always exists a finite number N such that U≠N

1 and U≠N
2 are perfectly distinguishable,

although they were not in the single-copy case. This result can be extended to any finite set of unitary
transformations. Finally, a fidelity for one-qubit gates, which satisfies many useful properties from the
point of view of quantum information theory, is presented.
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Quantum nonorthogonality is one of the basic features of
quantum mechanics. The deep implications of nonortho-
gonality can be reflected by the study of the following
simple scenario: Consider the case in which one has to
determine an unknown state chosen from a set of two quan-
tum alternatives which are not orthogonal. It is well known
that a complete determination is not possible unless you are
provided with an infinite number of copies of the unknown
state. Starting from this simple situation, some measures
have been defined trying to quantify the degree of orthogo-
nality, or distinguishability, between quantum states, either
for pure [1] or mixed [2] states. A geometrical structure
for the set of quantum states emerges from these measures:
the closer the two states, the less distinguishable they are.

Not very much is known about how to extend some of
these concepts to the case of unitary operations, although
many results were found in [3]. In this Letter, after re-
viewing some of the existing ideas for quantum states, we
look for the measurement maximizing the statistical distin-
guishability between two unitary transformations. From
this result, as it happens for states, one can define a fi-
delitylike function based on statistical distinguishability
which measures the orthogonality between unitary trans-
formation (or quantum gates). Remarkably, and contrary
to what happens in the case of quantum states, it is proved
that, given two unitary matrices U1, U2 [ SU�d�, it is al-
ways possible to find a finite number N such that U≠N

1
and U≠N

2 are perfectly distinguishable, although they were
not for N � 1. The case of SU�2� is studied with detail
due to its simplicity and importance in quantum informa-
tion theory. But first, let us review some known results
about distinguishability between classical probability dis-
tributions, and how they are translated into the quantum
domain.

A generic probability distribution of M elements is given
by a vector, �p � �p1, . . . , pM�, with positive components
satisfying

P
i pi � 1. The M 2 1 hyperplane generated

by these points is called M simplex and corresponds to the
space of probability distributions of M elements. There is
a privileged metric in it, the Fisher metric, which reads
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pi
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It induces a geodesic distance between two probability dis-
tributions, �p and �q,

d� �p, �q� � arccos

µX
i

p
piqi

∂
� arccos

p
F , (2)

which can be thought of as a measure of the statistical dis-
tinguishability between two probability distributions [4].
The square of the term inside the brackets is the over-
lap or fidelity, F, between �p and �q. The Fisher metric
is then a measure of distinguishability between two neigh-
boring probability distributions and indeed it is the only
metric in the space of probability distributions which is
monotone under stochastic matrices [5] (a very natural
property any measure of distinguishability should satisfy).
Moreover, any generalized relative entropy of the form
Hg� �p, �q� �

P
i pig�pi�qi�, where g is a convex func-

tion on �0, `� with g�1� � 0, and, in particular, the Kull-
back information entropy [6], Hlog, leads to the Fisher
metric [7].

In [1,2] the classical statistical distinguishability was ex-
tended to the quantum domain, for pure and mixed states.
Consider the case in which one has to distinguish an un-
known given state, chosen from a set of two quantum
states, r1 and r2, belonging to an arbitrary Hilbert space.
A measurement will be performed over the system in or-
der to obtain some information about it. The most general
measurement in quantum mechanics corresponds to a reso-
lution of the identity by means of positive operators, the
so-called positive operator valued measure (POVM),

rX
i�1

Mi � 1 , (3)

with r arbitrary and Mi $ 0. The POVM maps a quantum
state, r, into a probability distribution of r elements,

pi � tr�Mir� . (4)

The problem of distinguishing the two quantum states
is now translated into discriminating between the two
© 2001 The American Physical Society 177901-1
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probability distributions, �p1, �p2, associated to the quantum
states through (4). A distance between states is then de-
fined, using (2) by looking for the measurement apparatus
that maximizes the statistical distinguishability between
the resulting probability distributions,

d�r1,r2� � max
Mi

arccos

µX
i

q
tr�Mir1�tr�Mir2�

∂
, (5)

which is equivalent to minimize the term inside the brack-
ets, i.e., the fidelity or overlap,q

F�r1,r2� � min
Mi

X
i

q
tr�Mir1�tr�Mir2� . (6)

For the case of one-dimensional projectors, r � jc� �cj,
Wootters [1] proved that (6) gives

F�c1, c2� � j�c1jc2�j2, (7)

while for mixed states it was shown in [2,8] that the solu-
tion of (6) leads toq

F�r1, r2� � tr
≥q

p
r1 r2

p
r1

¥
. (8)

Both quantities are a measure of the statistical distinguisha-
bility between quantum states [it is easy to prove that (8)
gives (7) when restricted to pure states]. It is remarkable
that the fidelity obtained for pure states is equal to the usual
overlap, while for the case of mixed states (8) is equal to
Uhlmann’s fidelity [9], although in principle there was no
argument for this coincidence.

Furthermore, the corresponding distance, d �
arccos

p
F, induces a metric tensor in the space of

states based on statistical distinguishability. For pure
states, one finds the Fubini-Study metric [10], which is
the only metric in the space of Hilbert space rays (pure
states without the global phase) invariant under the action
of unitary transformations, while for mixed states the
statistical distance leads to the Bures metric [11]. A
connection between quantum geometry and statistical
distinguishability seems to appear (see also [12]).

Our aim is to extend these ideas to the case of one-qubit
gates or SU�2� transformations, looking for a measure of
the statistical distinguishability between two unitary ma-
trices, U1, U2 [ SU�2�. After introducing some notation,
the strategy that maximizes the statistical distinguishabil-
ity between two SU�2� transformations is presented. From
this result, one obtains a measure of their distinguishability,
which can be thought of as a fidelity for one-qubit gates.

A generic unitary transformation U [ SU�2� can be pa-
rametrized as

U � cosa 1 i sinan̂�u, f� ? �s � eian̂�u,f�? �s, (9)

where u, f, and a are the standard polar angles of S3 [13].
Its spectral decompositions will be denoted by

U � eiaju� �uj 1 e2iaju�� �u�j , (10)

ju� and ju�� being the eigenvectors of n̂�u, f� ? �s with
eigenvalues 61.
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Given two unitary matrices, U1, U2 [ SU�2�, we ex-
plore whether it is possible to obtain a fidelity function
measuring their statistical distinguishability. The most
general strategy is considered [3,14]: The unitary matrices
are applied on one of the qubits of an entangled two-qubit
state, jc� [ C 2 ≠ C 2, and we want to find the measure-
ment that maximizes the distinguishability between the
states Ui ≠ 1jc�, i � 1, 2. The existing results for pure
states [15] can be used, and from (7) a fidelity for one-qubit
gates is defined as

F�U1, U2� � min
jc�

j�cj �Uy
1 ≠ 1� �U2 ≠ 1� jc�j2. (11)

Since the unitary operations act on the first qubit, the ex-
pression to be minimized is, with rA � trB�jc� �cj�,

min
rA

jtr�rAU�j2 � min
�s

1
2 jtr��1 1 �s ? �s�U�j2, (12)

where �s is the Bloch vector of rA and U � U
y
1 U2 is

again a unitary matrix. Using the parametrization of (9),
the quantity to be minimized is equal to cos2a 1 �n̂ ?
�s�2 sin2a. The maximal distinguishability, or minimum
overlap, is obtained when jc� is a maximally entangled
state, s � j�sj � 0, or n̂ and �s are orthogonal, and the fi-
delity for one-qubit gates reads

F�U1, U2� �
jtr�Uy

1 U2�j2

4
. (13)

Note that this expression is equal to the known trace inner
product in the space of square matrices and tr�U� is the
group character.

The spectral decomposition (10) allows for an alterna-
tive derivation of the result which is going to be quite fruit-
ful for its generalization. In fact, writing (12) in the basis
where U is diagonal, we have

min
ruu

jruueia 1 �1 2 ruu�e2ia j2 � cos2a �
jtrUj2

4
,

(14)

where ruu � �ujrAju�. All the pure states jc� such that
ruu � 1�2 are optimal for distinguishing two unitary op-
erations satisfying U

y
1 U2 � U. In particular, it is always

possible to find an optimal state, depending on U, which is
not entangled, while the maximally entangled state is op-
timal independently of the two gates to be distinguished.

The fidelity (13) has been also proposed in [14] and the
maximally entangled state of two qubits seems to be the
state that best captures the information about one-qubit
gates in a single run: It is indeed optimal for the prob-
lem of estimating an unknown gate [14] and, as it has
been proven here, for discriminating between two pos-
sible SU�2� operations.

Consider the case in which one has to distinguish an
unknown one-qubit gate chosen from a set of two alterna-
tives, U1, U2 [ SU�2�, but now N copies of the unknown
gate are provided (i.e., it is possible to run the gate N times
in parallel). This means that the best strategy maximizing
177901-2
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the distinguishability between U≠N
1 and U≠N

2 should be ob-
tained. It can be proved that, contrary to what happens for
quantum states, there always exists a finite number N such
that U≠N

1 and U≠N
2 are perfectly distinguishable although

this was not the case for N � 1.
Take as above U � U

y
1 U2, with spectral decomposition

given by (10), with 0 # a # p�2 (when p�2 # a #

p the same reasoning can be applied). The eigenval-
ues of U≠N are 	e6iNa, e6i�N22�a , . . . , e6i�Nmod2�a
, where
�N mod2� is equal to 1 (0) for odd (even) N , with eigen-
vectors given by the corresponding tensor products of ju�
and ju��. The determination of the state jC� [ C 2N

≠

C 2N
, of the composite system AB, minimizing j�CjU≠N ≠

1jC�j will provide us with a measure of the distinguisha-
bility between the N copies of the two SU�2� operations.
Denoting by uN

i and juN
i � the eigenvalues and eigenvec-

tors of U≠N and by � � trB�jC� �Cj�, this quantity can
be shown to be equal to [see (14)]

j�CjU≠N ≠ 1jC�j2 �

Ç X
i

liu
N
i

Ç2
, (15)

where li � �uN
i j�ju

N
i � are positive numbers satisfyingP

i li � 1. This implies that the optimization of the dis-
tinguishability is equivalent to minimize the convex sum
of the eigenvalues of U≠N , which are complex numbers
distributed over the circle jzj � 1 (see also [3]). It is now
easy to prove that this expression gives zero, i.e., perfect
distinguishability, when Na $ p�2. Indeed, take the first
integer number, Nmin, satisfying this condition,

Nmin �

∑
p

2a

∏
. (16)

In this case the separable state jC� � jCs� ≠ j0�, where

jCs� �
p

q �ju1N � 1 ju2N �� 1

q
1
2 2 q �ju1� 1 ju2�� ,

(17)

u6N and u6 are the eigenvectors with eigenvalues e6iNmina

and e6i�Nminmod2�a, and

q �
cos��Nminmod2�a�

2	cos��Nminmod2�a� 2 cos�Nmina�

(18)

allows for a perfect discrimination between the Nmin
copies of the two unitary matrices; i.e., the states
jC

s
i � � U

≠Nmin
i jCs� are orthogonal. Of course, a very

similar procedure can be applied when N . Nmin.
The minimal number of copies of the unknown gate,
N �U1, U2�, needed for perfect distinguishability is then
given by (16), that is, the first integer N such that the
minimal arclength in the circle jzj � 1 including all the
eigenvalues of U≠N is greater than p. Note that this is
always possible with a finite number of copies, unless
U � 1, i.e., U1 � U2.

The measure of the distinguishability induces, as in the
case of quantum states, a distance in the space of one-qubit
177901-3
unitary operations. Given U1, U2 [ SU�2�, the distance
based on their statistical distinguishability is

d�U1, U2� � arccos

µ
jtr�Uy

1 U2�j
2

∂
, (19)

with 0 # d # p�2. Using this formula, the minimal num-
ber of copies for perfect distinguishability is the first inte-
ger satisfying

N�U1, U2�d�U1,U2� $
p

2
, (20)

the closer the two gates are, the larger the number N is.
One may consider a U-independent strategy, where the

unknown unitary is applied on N copies of the maximally
entangled state (which has been proven to be optimal for
the single-copy case). The fidelity is now equal to cos2Na,
and for large N it goes similar to a Gaussian with variance
1�
p

2N. In this case, we are able to distinguish, almost
with certainty, unitaries that differ by an angle a * N21�2,
while our U-dependent strategy gives perfect discrimina-
tion up to a * N21 (20).

From (19), a Riemannian metric in SU�2� is found:

ds2
U �

1
2 tr�dUdUy� . (21)

This is the Cartan-Killing metric form on the SU�2� group
manifold, and it has a nice geometric interpretation. A
generic SU�2� matrix can be parametrized by two complex
numbers, b � b1 1 ib2 and g � g1 1 ig2,

U �

µ
b g

2g� b�

∂
, (22)

with b
2
1 1 b

2
2 1 g

2
1 1 g

2
2 � 1. Thus, any unitary opera-

tion can be thought of as a point in a three-sphere. It is
easy to see that the Euclidean metric on this three-sphere is
equal to (21), and the volume element given by the square
root of the determinant of the metric tensor is equal to the
Haar measure [13], as it was expected.

Finally, we explore the extension of these ideas to the
case of arbitrary dimension; i.e., we look for a fidelity
function reflecting the statistical distinguishability between
two unitary transformations U1,U2 [ SU�d�. As above,
the most general strategy consists of taking a bipartite pure
state, now jc� [ C d ≠ C d , and applying the unknown
transformation, chosen from a set of two alternatives, over
one of the subsystems. The pure state minimizing the
overlap j�cj �Uy

1 U2� ≠ 1jc�j will provide us with a mea-
sure of the statistical distinguishability between the two
unitary operations. Taking the spectral decomposition of
U � U

y
1 U2, 	jui�, ui 
, and rA � trB�jc� �cj�, the statisti-

cal distinguishability between the two SU�d� transforma-
tions is

min

Ç X
i

liui

Ç2
, (23)

where li � �uijrAjui�. The eigenvalues of U are com-
plex numbers of modulus equal to one. Defining by 2d the
177901-3
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minimal arclength in the circle jzj � 1 such that all the ui

are included in it, it is not difficult to see, generalizing the
result of SU�2�, that (23) is equal to zero when d $ p�2;
i.e., one is able to distinguish the two unitary transforma-
tions. When d , p�2, the best strategy consists of taking
the two eigenvalues whose phases are maximally separated
on the unit circle [3]. The found fidelity, based on statis-
tical distinguishability, is

F�U1, U2� � cos2d�U1, U2� , (24)

where d�U1, U2� � min�d,p�2�. Again, the maximal dis-
tinguishability can be obtained with an unentangled state.
Note that, for SU�2�, since there are only two eigenvalues,
this formula gives (13) and the state jc� can be chosen
equal to a maximally entangled state of two qubits, inde-
pendently of the two unitary matrices. In the general case,
SU�d�, the results are not as simple and the optimal state
depends on the two unitary operations.

Let us mention that again it is always possible to find
a finite number N such that U≠N

1 and U≠N
2 are perfectly

distinguishable, although this was not the case for N � 1.
The formula for this number is the same as (20), and it is
consistent with the found measure of statistical distance.

In this work, we have studied the problem of distin-
guishing unitary operations starting from the simplest sce-
nario: An unknown unitary operations is chosen from a
set of two alternatives, U1, U2 [ SU�d�. Previous results
for quantum states have been used and a measure of the
statistical distinguishability between U1 and U2 has been
found. Contrary to what happens for quantum states, there
always exists a finite number N such that N copies of the
unknown gate are enough for its complete determination,
although this was not possible when N � 1. As we have
shown, the closer the two gates are, the larger the num-
ber N . Indeed, we can generalize this result to the case in
which the unknown gate belongs to a finite set of k unitary
transformations. By performing k 2 1 tests as described
above, each test allows to discard one of the alternatives,
so a perfect discrimination is possible after a finite number
of gate runs. The pair of gates that are more distant should
be chosen in each test, in order to minimize the number of
runs.

For the particular case of SU�2�, the found measure of
statistical distinguishability (13) has a nice geometrical in-
terpretation and has been also proposed as a good measure
of the similarity between gates from the point of view of
estimation of an unknown unitary operation [14]. Indeed,
it is also interesting to define a new measure between uni-
tary operations reflecting, instead of their statistical distin-
guishability, the overlap resulting from their application;
177901-4
i.e., it compares their ability on average to make quantum
states orthogonal. The expression for this quantity will be

F̄�U1, U2� �
Z

dcj �cjU
y
1 U2jc�j2, (25)

which for the case of SU�2� leads to

F̄�U1, U2� �
1
3 1

2
3 F�U1, U2� . (26)

In view of all these results, we propose expression (13)
as a fidelity for one-qubit gates, since it captures the notion
of statistical distinguishability between two SU�2� trans-
formations in several ways and it has a nice geometrical
interpretation. We hope this function will be useful in
any context where a figure of merits for one-qubit gates is
required.
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