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Nonequilibrium Relaxation Times in Polymer Knot Groups
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Flexible polymer knots with strict topological constraint of no segment crossing are studied by Monte
Carlo simulations. The nonequilibrium relaxation time of an equilibrated polymer knot cut at one
point to relax to a linear chain is measured. Prime knots up to 20 essential crossings from the groups
�31, 51, 71, . . .�, �41, 61, 81, . . .� and �52, 72, 92, . . .�, �62, 82, 102, . . .� are studied. The nonequilibrium relax-
ation time for knots within a group are found to increase stepwise linearly with the number of essential
crossings of the original knot. Our results suggest an equally spaced topological interaction energy spec-
trum for knots in the same group and thus provide a quantitative description of topological interactions.
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The fact that segments are forbidden to cross in a knot
gives rise to strong topological interactions which is mani-
fested by the various topological invariants that catago-
rize the knot. These invariants, such as the number of
essential crossings, unknotting number, topological writhe
number, bridge number, polynomial invariants, etc. [1,2],
will persist their values/forms no matter how the knot is
deformed, but without cutting it. The conventional nomen-
clature of a knot is denoted by CK where C is the number of
essential crossings, i.e., the minimum number of crossings
in any planar projection of the knot (see Fig. 1), and K is
just a label to distinguish topologically different knots. C
is a fairly weak topological invariant and can have an ex-
ponentially large degeneracy when C is large. Advances
had been made in classifying knots and topological invari-
ants [3–5]. More sophisticated topological invariants such
as Alexander and Jones polynomials and Vassiliev invari-
ant can distinguish knots much better, but there is still no
one-to-one correspondence for more complex knots.

Although the desire to connect knot theory and physics
dated back to Lord Kelvin who imagined different atoms
as distinct knots embedded in ether, there was limited
progress until recent decades due to the breakthrough of
Jones polynomials. Some advances in the connections be-
tween knot theory and physics can be seen in knotlike
structures in quantum and classical field theories recently
[6,7]. Even then, the connection tends to be mathemati-
cal and abstract. Furthermore, due to the advances in re-
cent experimental techniques in chemical and biological
systems which can manipulate naturally occurring knotted
DNA [8–11] as well as artificially tying up a knot mole-
cule [12], there is a real urge for some fundamental under-
standing of the physical properties of knots. Topological
constraints dictate the physical and geometrical properties
of the knot [13–19]. Such topological interactions give
rise to the entanglement effects which govern the dynam-
ics in polymeric systems [20]. Topological interactions in
knots are easy to picture but hard to quantify, and yet they
are robust and have good memories. On the other hand,
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there have been various studies on the energy of physical
knots [21–24], but the precise form of a satisfactory en-
ergy function that can describe all the physical properties
of a knot molecule accurately or distinguish different knots
is still lacking. This is largely due to the absence of a suit-
able quantitative description of the topological interactions
among the segments in a physical knot. Topological inter-
actions in a knot can be intuitively thought of as the free
energy difference of a polymer constrained to a particular

FIG. 1. Knot diagrams for the �31, 51, . . .�, �41, 61, . . .�, and
�52, 72, . . .� groups. The Conway notations of the knots are also
shown.
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knot type relative to some reference state, such as a free
linear polymer. Such a topological free energy difference
is entropic in nature since the number of possible configu-
rations of the chain constrained to a knot is much less than
that of a linear free chain.

To probe the nature of topological interactions in a knot,
one should look for the physical quantities that can best
manifest the pure topological interactions. In our previ-
ous work [25], we demonstrated that prime knots can be
categorized into groups according to their nonequilibrium
relaxation times obtained by cutting the knots. However,
the interactions in the knot using the bead-spring model in
our previous approach [25] consist of topological as well as
other energies such as spring energies of the bonds and at-
traction between monomers, and hence masking the probe
for pure topological interactions.

In this Letter, we aim to study knots with only topo-
logical constraint but without other extra interaction en-
ergies such as attractions among monomers and solvent
and consider knotted flexible polymers. Using the bond-
fluctuation model for polymer chain [26], various knotted
ring polymers with 180 effective monomers up to C � 20
under good solvent conditions are studied by dynamic
Monte Carlo simulations. There are only two basic interac-
tions in our model: the first are the hardcore excluded vol-
ume effects between the monomers which can be thought
of as a knot having a finite cross-section thickness; the sec-
ond is the prohibition of any segment crossing in the course
of the dynamics and hence entanglement effects are taken
care of automatically. It is clear that the latter interaction is
of a strong topological nature which would guarantee that
the initial knot will remain the same type unless a segment
is cut. The equilibrium average contour lengths of these
prime knots are the same as the equilibrium average of the
corresponding linear free chain (of the same number of
monomers) within 0.8%, indicating that the knots are far
away from the tight knot limit [23]. The well-equilibrated
knot is then cut at a randomly selected segment at t � 0
and allowed to relax to the free linear conformation. In our
simulations, the cut polymer knot is allowed to relax for a
long period of time until it eventually reaches a state that
is physically indistinguishable from a free linear chain at
equilibrium. Figure 2 shows the snapshots of a 201 knot
that is well equilibrated (top), then one segment is cut at
t � 0 and allowed to relax to the final state of a free linear
chain (bottom).

The cut knot is considered to be “untied” when all of
its physical properties, such as characteristic size, contour
length, average crossing number, average writhe, bond
lengths, autocorrelation time, and flexibility, etc. have
approached the same equilibrium values as the linear chain
of the same length under the same condition. It should be
noted that here “untying” does not literally mean that all
the chain segments are untangled, just like an ordinary free
long linear polymer, it is possible to have some portion of
its segments entangled during the course of its dynamical
movements. The average number of crossings projected
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FIG. 2. Snapshots of the equilibrium configuration of a 201
knot (top) and the final configuration of the cut knot after 1.25 3
106 Monte Carlo steps (MCS) per monomer.

in all directions, X, gives a good indication of untying
the knot. The average projected crossings is calculated as

[11] X � 1
4p

RL
0

RL
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��r2�r 0� ? d �r 3 d �r0

j�r2�r 0j3 j where the double line
integral is over the polymer and L is its contour length.
The radius of gyration Rg, which characterizes the size of
the polymer, is also carefully monitored. Figure 3 displays
the relaxation of the radii of gyration and average crossing
numbers of the trefoil and 62 knots; they approach their
corresponding values of a free linear chain of the same
length. The overbar denotes averages over different
realizations (typically �4000 to 5000) of the relaxation
processes. By untying the knot, one can get information
on the topological state of the original knot. In the course
of relaxation, the topological information of the original
knot is lost and the characteristic relaxation time measures
its rate. The equilibrium ensemble averages of the radius
of gyration of the uncut knot and that of a free linear chain
of the same length, denoted by �Rg� and �Rg�linear, respec-
tively, are also measured independently. The characteristic
nonequilibrium relaxation time is extracted from the data
of Rg�t� as the time needed for �Rg�linear 2 Rg�t� to decay
to 1�e � 0.368 of its initial value (� �Rg�linear 2 �Rg�).
Loosely speaking, t is the typical time scale needed to
untie the cut knot by random Brownian motion. The
variation of t versus C is highly nonmonotonic, although
naively one would imagine that it would take a longer time
to untie the knot with more crossings. Some knots such as
71, have a longer t than other knots having more crossings
(such as 81, 82, 92, 101, 112, and 121). This indicates that
the particular knot type is very important in determining
t. Knots on the first three groups in Table I have also been
observed to follow the same group in the bead-spring
model in our previous study (only up to C � 9 and
N � 60) [25]. Here with a different polymer model and
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FIG. 3. Average relaxations of the radius of gyration Rg�t� and
mean crossing number X�t� of the 31 and 62 knots cut at t � 0.
�· · ·�linear denotes the independently measured equilibrium en-
semble average of the corresponding a free linear chain. Time
is in units of MCS�monomer.

with more different knot types with higher C, such a clas-
sification is also observed for knots for one more group as
shown in Fig. 4 and Table I. Careful inspection reveals
that the Alexander polynomials [1,2] of the knots in each
group have the same parametrization in terms of C as
listed in Table I. These groups are known as “homologous
families” to knot theorists. Such a parametrization has the
same origin as the physical classification we observed:
both are due to the fundamental similarity in the topology
of knots in the same group. Our observation indicates that
conventional labeling of knots can further be parametrized
naturally into groups in a way that has a direct physical
meaning in terms of the topological interactions in a knot.
Also the variations of t with C are appreciably stronger
for the �31, 51, . . .� and �62, 82, . . .� groups than the twist
knot groups, this may have some relation to the fact that
the degree of the polynomial invariants of the former two
groups increase with C, while for the other two twist knot
TABLE I. Table for the different knot groups in this paper with their Alexander polynomials D�s�, Conway notations, and the em-
pirical formulas for the mean writhe number and scaled nonequilibirum relaxation times. t0 is the relaxation time of the trivial knot.

Knot group D�s� Conway notation �Wr� t�t0

�2, C� torus knots
�31, 51, 71, . . .� �1 1 sC ���1 1 s� C 10

7 C 2 6
7

2
3 C 1 4

3

Even twist knots
�41, 61, 81, . . .� C

2 2 1 2 �C 2 1�s 1 � C
2 2 1�s2 �C 2 2� �2� 4

7 C 2 16
7

4
15 C 1 8

3

Odd twist knots
�52, 72, 92, . . .� C21

2 2 �C 2 2�s 1 C21
2 s2 �C 2 2� �2� 4

7 C 2 16
7

4
15 C 1 8

3

�62, 82, 102, . . .� 21 1 3s� 11sC23

11s � 2 sC22 �C 2 3� �1� �2� 10
7 C 2

40
7

1
2 C 1

4
3
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FIG. 4. Monte Carlo simulation data for the nonequilibrium
relaxation time of the radius of gyration of the knot vs C. Each
knotted polymer consists of 180 monomers. Uncertainties are
about the size of the symbols. t is measured in units t0 and
t0 � 9 3 104 MCS�monomer.

groups their D�s�’s are always of degree 2. The parame-
trized form of the Alexander polynomials of the latter two
groups are similar (but not the same) and their variations
of t with C are close to each other as shown in Fig. 4.
However, the variation of t with C of the odd twist knot
groups is systematically slightly larger than that of the
even twist knot group. The similarity in topological inter-
actions in a group is also supported by the observation that
the Conway notations [1,2] of the knots are parametrized
in the same way within a group (see Table I).

The most remarkable fact in the present study is that t

increases linearly with C for all the four groups, as shown
in Fig. 4. On the contrary, for knots with nonpure topologi-
cal interactions a nonlinear (but monotonic within a group)
variation of t with C was observed in the bead-spring
model [25], which is due to the presence of other ener-
gies among monomers and the fact that the chain length
is relatively short (the knots with high C are somewhat
175503-3
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tight in [25]). The fact that classification into homolo-
gous groups was still observed in the bead-spring model
in [25] suggests that the interactions inside the knots were
predominately topological; however, with the presence of
other energies the quantitative relaxation behavior becomes
nonlinear with C.

It is worth noting that many equilibrium physical prop-
erties such as equilibrium size, mean crossing number, and
autocorrelation decay time, etc. [25,27], show a much less
prominent difference for uncut knots with the same C but
belong to different group, although current experimental
techniques in sedimentation and gel electrophoretic migra-
tion [28,29] can detect these differences. By cutting the
knot and releasing the strong topological constraint, such
a knot group classification emerges naturally and clearly.
One can imagine that by cutting the knot and relaxing to
the linear free chain, the chain releases some sort of free
energy which we call “topological free energy” F , since
its dominant contribution comes from topological inter-
actions. If the knot is somewhat tight [23,24] or some
other interactions are present [25], then F would have sig-
nificant contributions other than topological interactions.
In the present case, since all the polymer knots are not tight
and there is no other energy scale present in our model, F
is purely topological. F is dissipated by Brownian type
motions in some characteristic time scale t with a certain
rate, thus F � Rate 3 t. Since the knots in our simu-
lations are far from the tight knot limit and the monomer
concentration is in the dilute regime, the rate of dissipation
is the same for all the knot types. Furthermore, as shown
in Fig. 4, t varies linearly with C remarkably well within
a group, for all the groups we studied. Hence one has
F � AgC 1 Bg, where Ag and Bg are constants within a
group. The topological energy spectrum has equal spac-
ing of Ag for knots within a group. One can imagine the
topoisomerase enzyme supplies a “topolon” of energy in
changing the knot type by increasing two crossings in a
knotted DNA molecule. The equally spaced spectrum im-
plies that tying two more crossings within the same knot
group increases the “topological interaction energy” by one
step on average, regardless of the number of crossings the
knot already has. The quantized linear increment of the
mean writhe number �Wr�, of knots with C within a knot
group has also been observed for ideal [17,18] and flexi-
ble [27] uncut knots at equilibrium. �Wr� is the average
of all projected signed crossings and presumably reflects
some topological details of the knot. Our results of an
equally spaced topological energy spectrum could provide
a plausible picture for the observed quantumlike behavior
of �Wr� in knots and links. Motivated by the observa-
tion that �Wr� can be quite well represented by the lin-
ear empirical expressions [17,18,27,] displayed in the 4th
column in Table I, we attempt to summarize the linear be-
havior of t as follows. If one scales the nonequilibrium
relaxation times of the knots by that of the trivial knot t0,
the stepwise increase of t with C can be quite well ap-
proximated by the suggestive linear relations with C as
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shown in the 5th column in Table I. Although we have
no explanation for the rational coefficients in the linear
relation, they are quite close to the best fit values. For ex-
ample, for the torus group, the best fitted linear relation
is �0.66 6 0.02�C 1 �1.33 6 0.08�. We hope our results
can stimulate further theoretical understanding of topologi-
cal interactions in knots.
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