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Nonequilibrium Defect-Unbinding Transition: Defect Trajectories and Loop Statistics
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In a Ginzburg-Landau model for parametrically driven waves, a transition between a state of ordered
and one of disordered spatiotemporal defect chaos is found. To get insight into the breakdown of the
order, the defect trajectories are tracked in detail. Since the defects are created and annihilated in pairs,
the trajectories form loops in space-time. The probability distribution functions for the size of the loops
and the number of defects involved in them undergo a transition from exponential decay in the ordered
regime to a power-law decay in the disordered regime. These power laws are also found in a simple
lattice model of randomly created defect pairs that diffuse and annihilate upon collision.
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For pattern-forming systems far from thermodynamic
equilibrium that exhibit spatiotemporal chaos, one of the
important problems is how to characterize these spatially
disordered and temporally chaotic states. A conspicuous
feature of many of them are spatially localized defects
such as the dislocations found in stripelike convection-
roll patterns in Rayleigh-Bénard or electroconvection (e.g.,
[1,2]). A tantalizing question is whether the spatiotemporal
chaos or the breakdown of order can be described in terms
of these defects.

Early on in the investigation of pattern-forming systems
it has been recognized that near onset dislocations in stripe
patterns are mathematically closely related to defects in the
equilibrium xy-model in two dimensions, which describes,
e.g., magnetic systems in which the spins are confined to
lie in a plane [3]. Both systems are described by a single
complex order parameter A, which gives the magnitude
and wave vector of the stripe pattern and the magnitude
and orientation of the local magnetization, respectively.
In terms of A the dislocations are given by locations of
vanishing magnitude, jAj � 0.

A fascinating phase transition studied extensively in the
xy-model is the Kosterlitz-Thouless transition, which is
associated with the unbinding of defect pairs [3,4]. The
analogy between these defects and those in stripe patterns
motivated early efforts to identify related phenomena also
in pattern-forming systems such as Rayleigh-Bénard con-
vection [5]. No clear signature of such phenomena were
found, however. This is in part related to the fact that the
phase transitions occur at finite temperature and are inti-
mately related to the relevance of fluctuations, whereas in
macroscopic systems such as Rayleigh-Bénard convection
the effect of (thermal) noise is negligible in most situa-
tions [6]. The recent observations of spatiotemporal chaos
in various types of convection experiments (e.g., [1,7,8])
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have renewed the interest in connections between phase
transitions and nonequilibrium transitions with the notion
that the chaotic dynamics may to some extent mimic the
fluctuations of the thermal systems.

Various aspects of the role of defects in spatiotemporal
chaos have been investigated. The single-defect probabil-
ity distribution function has been measured in electrocon-
vection [9] and found to agree quite well with results based
on the single complex Ginzburg-Landau equation (CGLE)
and on a simple diffusive model [10]. In binary-mixture
convection the defects have been used to reconstruct the
full wave pattern [8]. The dynamical relevance of dislo-
cations has been demonstrated best thus far in work that
extracted the contribution of each dislocation to the total
fractal dimension of the (extensively) chaotic attractor of
the CGLE [11].

The spatiotemporally chaotic states found in pattern-
forming systems typically arise from ordered states
through some transition when a control parameter is
changed. An interesting question is what actually happens
when the order of the pattern breaks down. In analogy
with the melting of two-dimensional crystals [3,12]
one may expect that defects in the pattern may play an
important role.

In this Letter, we present results for a transition between
two spatiotemporally chaotic states in a Ginzburg-Landau
model for parametrically excited waves [13]. While one
state is disordered in space, the other retains a stripelike
order despite the chaotic creation and annihilation of defect
pairs. We characterize the breakdown of order in terms
of the defect dynamics and find that the transition to the
disordered state is associated with what one may call an
unbinding of pairwise created defects. Tentative results
for this unbinding transition have been presented earlier
[13,14].
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We consider a Ginzburg-Landau model for parametri-
cally excited small-amplitude waves in a two-dimensional
axially anisotropic system [15,16],

≠tA 1 s≠xA � �d=2 1 a 1 cjAj2 1 gjBj2�A 1 bB�,

(1)

≠tB 2 s≠xB � �d=2 1 a 1 cjBj2 1 gjAj2�B 1 bA�,

(2)

as it applies, for instance, to electroconvection in nematic
liquid crystals [2]. In terms of the complex amplitudes
A and B, the waves are given by A�x, y, t� exp�ivf t̃�2 2

iqcx̃� 1 B�x, y, t� exp�ivf t̃�2 1 iqcx̃� 1 c.c. 1 h.o.t. Here
�x̃, ỹ, t̃� and �x, y, t� are fast and slow spatial and tempo-
ral variables, respectively. With a � ar 1 iai , the trav-
eling waves arise at ar � 0 in a Hopf bifurcation with
frequency vH and wave number qc. For cr , 0 the bi-
furcation is supercritical and the waves exist for ar . 0.
The system is periodically forced parametrically at close to
twice the Hopf frequency, vf � 2vH . In (1) and (2), this
induces a time-independent resonant interaction term of
magnitude b between the amplitudes of the counterpropa-
gating waves [15,16]. For ar , 0 and b2 . a2

r 1 a2
i

standing waves are excited parametrically that are phase
locked to the forcing. In the simulations we use periodic
boundary conditions in both directions and solve (1) and
(2) pseudospectrally with a fourth-order integrating-factor
Runge-Kutta scheme.

Numerical simulations of (1) and (2) show two dis-
tinct regimes of spatiotemporal chaos for the parametri-
cally excited waves: a conventional regime in which the
spatial correlation function decays rapidly in an essentially
isotropic way and a regime of spatiotemporal chaos that
exhibits a strikingly ordered state in which the correlation
function reveals a stripelike order [14] that is also appar-
ent in individual snapshots [13]. The transition between
the two states is discontinuous as indicated by a jump in
the average number of defects.

In order to get insight into the role of the defect dynam-
ics in this order-disorder transition, we track each defect
from its creation to its annihilation. Figure 1 presents an
example of the resulting space-time diagram in the regime
with persistent spatial order. The y-location of each defect
with positive topological charge (i.e., along a contour en-
circling the defect the argument of A changes by 12p) is
shown as a solid square while the y-location of the defects
with negative charge are shown as dots. The trajectories of
almost all the defect pairs form simple loops in space-time.
Thus, while for topological reasons in any system defects
are always annihilated in pairs of opposite charge, here the
annihilating defects have also been created together. It is
in this sense that we consider them to be bound pairs.

The preservation of stripelike order in the ordered
regime can then be understood intuitively, since the
dynamics of defects in simple defect loops affect only a
174502-2
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FIG. 1. Space-time diagram of defect trajectories for
a � 0.25, c � 21 1 4i, d � 1 1 0.5i, s � 0.2, g � 21 2
12i, and b � 2. Squares and dots denote defects of opposite
topological charge.

very small portion of the system and, moreover, render
the system almost unchanged after their disappearance. In
some cases the space-time loops involve two (see arrow
in Fig. 1) or possibly three defect pairs. Then the area of
the system that is perturbed by the defects is larger, but
after their annihilation the system is still left in essentially
the same state as before.

The orientation and position of the stripe pattern is af-
fected significantly only between the defects. At first one
may therefore expect that the destruction of order requires
that the defects in a pair have to unbind and separate ar-
bitrarily far from each other. However, it would also be
sufficient if the defects in a given pair are annihilated by
defects from two other pairs, which in turn are annihilated
by further defect pairs, generating a chain of events whose
trajectory in space-time is a large loop that spans the whole
system. Our simulations show that in fact even in the dis-
ordered regime most defects are annihilated by their “own”
partner and most loops are small compared to the system
size. Thus, to distinguish the two regimes we consider
more detailed measures such as the distribution of defect
loops as a function of their size.

Since the relevant information turns out to be in the
relatively rare, large loops, care has to be taken to iden-
tify annihilation and creation processes reliably and dis-
tinguish them from situations in which a defect simply
moved relatively far in one time step. In our defect-
tracking scheme we recursively check the distances be-
tween all defects Di�t� at time t from all defects Di�t 1

Dt� at time t 1 Dt. If for two defects of equal charge
this distance is smaller than some threshold value d

�n�
1 �

n ? d1, they qualify as a single “continuing defect” that has
moved from one position to the other. It can happen that
with this criterion a given defect Dk�t� has more than one
possible continuation defect Dj �t 1 Dt�. Then among the
possible continuation defects the one closest to Dk�t� is
assigned to be its continuation. Defects that are not con-
tinuing defects are candidates for annihilation and creation
174502-2
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events. Among those, two defects of opposite charge and
closer than a second threshold d

�n�
2 � n ? d2 are identi-

fied as a pair that was annihilated (or created) in this time
step. This analysis is then repeated with increased values
for the thresholds, d

�n11�
i � �n 1 1� ? di, until all defects

have been assigned.
Figure 2 shows our results for the relative frequency of

loops consisting of at least n defect pairs. These results
(and those in Figs. 3 and 4) are based on 8000 time steps
(dt � 0.5� with an average number of 7000 defects at any
given time in the disordered regime. In the ordered regime
(b $ 0.7� very few loops contain more than five defect
pairs and the distribution decays essentially exponentially.
In the disordered regime �b # 0.625�, however, the num-
ber of loops with many defects is greatly increased and the
decay of the distribution function is only algebraic with an
exponent of a � 1.5.

Since the defect motion essentially affects only the
(vaguely defined) part of the system between the defects,
a better indicator for the expected loss of order are the
spatial extents Dx � xmax 2 xmin and Dy � ymax 2 ymin

of the defect loops in the x- and y-directions, respectively.
Here xmin,max and ymin,max refer to the minimal and
maximal values of x and y in any given loop. Note that
these values need not be obtained at the same time. Thus,
in principle, a small loop could still yield large Dx or Dy
if it traveled.

Similar to Fig. 2, Fig. 3 shows the relative frequency of
loops with size in the x-direction larger than Dx. In the
ordered regime the decay is again very rapid and there are
essentially no loops with Dx larger than ten, which is of
the order of one wavelength. This may indicate some pin-
ning of the defects by the pattern in that it may restrict their
motion to a predominantly climbing motion. In the disor-
dered pattern, on the other hand, the loops reach the size of
the system. In a simple interpretation these events would
be associated with a persistent change in the average wave
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FIG. 2. Relative frequency of loops made up of at least n
defect pairs. Parameters as in Fig. 1 except for b. System size
L � 1088 in the disordered regime; L � 272 and L � 136 for
b � 0.7 and b � 1.0, respectively.
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vector of the pattern. Again, the distribution functions are
exponential in the ordered regime and exhibit a power law
in the disordered regime with exponent b � 3. The dis-
tinction between the regimes is not quite as striking in the
spatial extent Dy in the y-direction. There, even in the
ordered regime the loops can reach a size of Dy � 100,
while the loops in the disordered regime extend to sizes
of Dy � 1000. The distribution is still exponential in the
ordered regime and appears to be power law in the disor-
dered regime. However, the measured exponent increases
from about 2.8 to 4 as b is increased from 0.4 to 0.625.

The duration Dt of the loops is also of interest and
the corresponding relative frequencies are shown in Fig. 4.
The exponential and power-law character of the distribu-
tions are quite clear in the respective regimes with the ex-
ponent of the power-law g � 2.7.

To give further support for the existence of power laws
in the distribution functions in the disordered regime and
to get more insight into their origin, we have investigated a
simple two-dimensional lattice model of the defect dynam-
ics, which is based on the observation that the single-defect
statistics in the disordered regime show the same signature
as those of the defect chaos in the CGLE. This type of
distribution has been shown to arise if the defects behave
as random walkers that are annihilated upon colliding with
any other defect of opposite charge [10].

The results of our implementation of the simple lattice
model are shown in Fig. 5. With a probability p, random
walkers of opposite charge are created pairwise at the same
randomly chosen site of a square lattice. They interact only
with walkers of opposite charge and annihilate upon con-
tact. Figure 5 shows the loop statistics for these walkers
in a system of size L � 1600 and a probability of creation
p � 0.000 016 (thick lines) and p � 0.0001 (thin lines).
All measured quantities, i.e., number of defects in a loop
and the spatial as well as the temporal extent of the loops,
show power-law behavior for large loops. The simplicity
of the lattice model suggests that the power laws are ex-
pected to arise in a much wider class of spatiotemporally
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FIG. 3. Relative frequency of loops with spatial extent in the
x-direction at least Dx. Parameters as in Fig. 2.
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FIG. 4. Relative frequency of loops with lifetime at least Dt.
Parameters as in Fig. 2.

chaotic systems including the CGLE. The exponents are
measured to be a � 1.6, b � 2.9, and g � 2.4, respec-
tively. Thus, even the values of the exponents agree quite
well with those obtained in the simulations of (1) and (2).

In conclusion, using numerical simulations of two
coupled complex Ginzburg-Landau equations describing
parametrically excited waves in two dimensions, we have
addressed the general problem of how the motion of
defects can be related to the breakdown of order in a
spatial pattern. The persistent creation and annihilation of
defects in itself need not be sufficient to destroy the order
as illustrated by the spatially periodic correlation function
found in the chaotic but ordered regime [14] (cf. [13]).
Our study of the transition from this ordered state to a
disordered state with an (almost) isotropically decaying
correlation function shows that the breakdown of order is
closely connected with certain details of the dynamics and
interaction of the defects. Following the trajectories of all
defects in the system, we have determined the statistics of
the loops formed in space-time by chains of creation and
annihilation events of oppositely charged defects. We have
found that the order-disorder transition is signified by an
orders-of-magnitude increase in the number of loops that
extend over large parts of the system, which we associate
with a type of unbinding of defect pairs. More precisely,
the decay of the loop distribution functions changes from
exponential to algebraic in that transition. The algebraic
decay is also found in a simple lattice model of diffusing
and annihilating defects, with the exponents agreeing quite
well with those found in the Ginzburg-Landau equations.
This suggests that power laws may be the signature of
the disordered states and that the same power laws may
occur in a wider class of disordered defect-chaotic states
including those of the single complex Ginzburg-Landau
equation [17] and possibly also in strongly nonlinear
states that are not described by weakly nonlinear theories.

The single-defect statistics obtained in the disordered
state and in the lattice model have also been found in ex-
periments in electroconvection [9] and in thermal convec-
174502-4
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FIG. 5. Simulations of the lattice model of size L � 1600.
Thick lines denote p � 0.000 016, thin lines p � 0.0001.

tion in an inclined layer [18]. It would be exciting to study
also the loop distribution functions in these systems.
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