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Motivated by turbulent drag reduction by minute concentrations of polymers we study the effects of
minor viscosity contrasts on the stability of hydrodynamic flows. The key player is a localized region
where fluctuations are produced by interactions with the mean flow (the “critical layer”). We show that
a layer of weakly space-dependent viscosity placed near the critical layer has a very large stabilizing
effect on hydrodynamic fluctuations, retarding significantly the onset of turbulence. The effect is not
due to a modified dissipation (as is assumed in theories of drag reduction) but is due to reduced energy
intake from the mean flow to the fluctuations. Similar physics may act in turbulent drag reduction.

DOI: 10.1103/PhysRevLett.87.174501 PACS numbers: 47.27.Rc, 47.27.– i
The addition of small amounts of polymers to hydrody-
namic systems produces dramatic effects on phenomena
such as the transition to turbulence, vortex formation, and
turbulent transport [1]. The phenomenon that attracted the
most attention was, for obvious reasons, the reduction of
friction drag by up to 80% when a very small concentration
of long-chain polymers was added to turbulent flows [2,3].
In spite of the fact that the phenomenon is robust and the
effect huge, there exists no accepted theory that can claim
quantitative agreement with the experimental facts. More-
over, it appears that there is no mechanistic explanation.
In the current theory that is due to de Gennes [4,5], one
expects the Kolmogorov cascade to be terminated at scales
larger than the Kolmogorov scale, leading somehow to an
increased buffer layer thickness and reduced drag, but how
this happens and what is the fate of the turbulent energy is
not being made clear.

In this Letter we propose that the crucial issue is in
the production of energy of hydrodynamic fluctuations
by their interaction with the mean flow. For the sake of
concreteness we examine a simple laminar flow and its
loss of stability and show how small viscosity contrasts
lead to an order of magnitude retardation in the onset of
instability of “dangerous” disturbances. In this model
everything is explicitly calculable, and we demonstrate
that nothing special happens to the dissipation. Rather,
it is the energy production that is dramatically reduced,
giving rise to a large effect for a small cause. At the
end of this Letter we argue that similar physics may
very well be at the heart of turbulent drag reduction,
but we stress that the phenomenon discussed below is
interesting by itself and well warrants an experimental
confirmation.

It is well known that parallel Poiseuille flow loses linear
stability at some threshold Reynolds number Re � Reth
(close to 5772). It is also well known that the instability is
“convective,” with the most unstable mode having a phase
velocity c. Analytically it has the form
1-1 0031-9007�01�87(17)�174501(4)$15.00
f̂�x, y, t� �
1
2 �f�y� exp�ik�x 2 ct�� 1 c.c.� exp�gt� ,

(1)

where f̂�x, y, t� is the disturbance stream function and
f� y� is the complex envelope of f̂�x,y, t�. We have cho-
sen x as the streamwise coordinate, k as the streamwise
wave number of the disturbance, c as the phase speed, and
t as time. g is the growth rate of the instability. What is
not usually emphasized is that the main interactions lead-
ing to the loss of stability occur in a sharply defined region
in the channel, i.e., at a layer whose distance from the wall
is such that the phase velocity c is comparable to the ve-
locity of the mean flow [6]. We refer to this layer as the
“critical” layer. It is thus worthwhile to examine the effect
on the stability of Poiseuille flow of a viscosity gradient
placed in the vicinity of the critical layer. Following [7]
we examine a channel flow of two fluids with different vis-
cosities m1 and m2; see Fig. 1.

Observing that the inferred effective viscosity in poly-
mer drag reduction increases towards the center by about
30% over about a 1�3 of the half-channel [8], we choose
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FIG. 1. Schematic of the flow: the fluid near the walls has a
viscosity m1, and that flowing at the center is of viscosity m2.
In the mixed layer (of width q) the viscosity varies gradually
between m1 and m2. The parameter p controls the position
of the mixed layer. For simplicity we neglect the downstream
growth in q.
© 2001 The American Physical Society 174501-1
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m2 � 1 and m � m1�m2 � 0.9, with all the viscosity
difference of 0.1 concentrated in a “mixing” layer of
width 0.1, leading to comparable viscosity gradients. The
observation that we want to focus on is shown in Fig. 2:
the threshold Reynolds number for the loss of stability of
the mode as in Eq. (1) depends crucially on the position
of the mixing layer. When the latter hits the critical layer
the threshold Reynolds number for the loss of stability
174501-2
reaches as much as 88 000. In other words, one can
increase the threshold of instability for a given mode 15
times, and by making the mixing layer thinner one can
reach even higher threshold Reynolds values.

In this Letter we analyze the physical origin of this
huge sensitivity of the flow stability to the profile of the
viscosity. The stability of this flow is governed by the
modified Orr-Sommerfeld equation [6]
ik��f00 2 k2f� �U 2 c 2 ig� 2 U 00f� �
1

Re
�mf�4� 1 2m0f000 1 �m00 2 2k2m�f00 2 2k2m0f0 1 �k2m00 1 k4m�f� ,

(2)
in which f, U, and m are functions of y. The bound-
ary conditions are f�61� � f0�61� � 0. All quantities
have been nondimensionalized using the half-width H of
the channel and the centerline velocity U0 as the length
and velocity scales, respectively. The Reynolds number is
defined as Re � rU0H�m2, where r is the density (equal
for the two fluids). The primes stand for derivative with
respect to y. At y � 0, we use the even symmetry condi-
tions f�0� � 1 and f0�0� � 0, as the even mode is always
more unstable than the odd.

Since the flow is symmetric with respect to the chan-
nel centerline, we restrict our attention to the upper half-
channel. Fluid 2 occupies the region 0 # y # p. Fluid 1
lies between p 1 q # y # 1. The region p # y # p 1

q contains mixed fluid. The viscosity is described by a
steady function of y, scaled by the inner fluid viscosity
m2:

m� y� � 1, for 0 # y # p , (3)

m� y� � 1 1 �m 2 1�j3�10 2 15j 1 6j2� ,

0 # j # 1 , (4)

m� y� � m, for p 1 q # y # 1 . (5)
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FIG. 2. The dependence of the threshold Reynolds number on
the position of the viscosity stratified layer for m � 0.9. The
dashed line pertains to the neat fluid. Note the huge increase in
Rth within a small range. This occurs when the stratified layer
overlaps the critical layer.
Here j � � y 2 p��q is the mixed layer coordinate. We
have assumed a 5th-order polynomial profile for the vis-
cosity in the mixed layer, whose coefficients maintain the
viscosity and its first two derivatives continuous across the
mixed layer. The exact form of the profile is unimportant.
For a plot of the profile m � 0.9, see Fig. 3.

The basic flow U� y� is obtained by requiring the ve-
locity and all relevant derivatives to be continuous at the
edges of the mixed layer:

U� y� � 1 2 Gy2�2, for y # p , (6)

U� y� � U�p� 2 G
Ry

p
y
m dy, for p # y # p 1 q ,

(7)

U� y� � G�1 2 y2��2m, for y $ p 1 q . (8)

Here G is the streamwise pressure gradient.
It can be seen that, comparing the mean profile U� y�

to that of the neat fluid (cf. Fig. 3), nothing dramatic hap-
pens to this profile even when the mixing layer is cho-
sen to overlap a typical critical layer. Accordingly we
need to look for the origin of the large effect of Fig. 2
in the energetics of the disturbances. To do so, recall that
the streamwise and normal components of the disturbance
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FIG. 3. Profiles of the normalized viscosity m� y� and nor-
malized velocity U� y� and the second derivative U 00� y� for
m � 0.9 (solid lines) and m � 1.0 (dashed lines). The mixed
layer is between the vertical dashed lines.
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velocity û�x,y, t� and ŷ�x, y, t� may be expressed via
stream function as usual: û�x, y, t� � ≠f̂�≠y and
ŷ�x, y, t� � 2≠f̂�≠x. These functions may be written in
terms of complex envelopes similar to Eq. (1):

û�x, y, t� �
1
2 �u� y� exp�ik�x 2 ct�� 1 c.c.� exp�gt� ,

ŷ�x, y, t� �
1
2 �y� y� exp�ik�x 2 ct�� 1 c.c.� exp�gt� .

(9)

The pressure disturbance p̂ is defined similarly.
Define now a disturbance of the density of the kinetic

energy

Ê�x, y, t� �
1
2 �û�x, y, t�2 1 ŷ�x, y, t�2� . (10)

We can express the mean (over x) density of the kinetic
energy as follows:

E� y, t� � 	Ê�x, y, t�
x � E � y� exp�2gt� ,

E � y� �
1
4 �ju� y�j2 1 jy� y�j2� .

(11)

The physics of our phenomenon will be discussed in
terms of the balance equation for the averaged disturbance
kinetic energy. Starting from the linearized Navier-Stokes
equations for û and ŷ, dotting it with the disturbance ve-
locity vector, averaging over one cycle in x, and using
Eqs. (9)–(11) leads to

2gE � y� � = ? J� y� 1 W1� y� 2 W2� y� , (12)

where the energy flux J� y� in the y direction, rates of
energy production (by the mean flow) W1� y�, and energy
dissipation (by the viscosity) W2� y� are given by

J� y� �
�u� y�p�� y� 1 c.c.�

4r
1

1
Re

m� y�=E � y� , (13)

W1� y� � 2
1
4U 0� y� �u� y�y�� y� 1 c.c.� , (14)

W2� y� �
m� y�

Re
�2k2E � y� 1

1
2

�ju0� y�j2 1 jy0� y�j2�� .

(15)

The superscript � denotes complex conjugate. To plot
these functions we need to solve Eq. (2) as an eigenvalue
problem, to obtain c, g, and f�y� at given Re and k. The
value of c determines the position of the critical layer. It
is convenient to compute and compare the space averaged
production and dissipation terms G1 and G2 defined by

G6 �
Z 1

0
W6� y� dy

¡ Z 1

0
E � y� dy . (16)

The local production of energy can be positive or nega-
tive, indicative of energy transfer from the mean flow to
the disturbance and vice versa, respectively. The pro-
duction in one region [where W1� y� . 0] can be partly
canceled out by a “counterproduction” in another region
[where W1� y� , 0].

The use of these measures can be exemplified with the
neat fluid (m � 1.0 here). The laminar flow displays its
first linear instability at a threshold Reynolds number of
Reth � 5772, which means that the total production G1
174501-3
across the layer becomes equal to the total dissipation G2

at this value of Re. Examining Fig. 4 we can see that
the disturbance kinetic energy is produced predominantly
within the critical layer, where the basic flow velocity is
close to the phase speed of the disturbance, while most of
the dissipation is in the wall layer.

The balance is not changed significantly when the vis-
cosity ratio is changed to 0.9 so long as the mixed layer is
not close to the critical layer. There is a small region of
production and one of counterproduction within the mixed
layer, whose effects cancel out, leaving the system close
to marginal stability.

We now turn our attention to Fig. 5, in which the main
point of this Letter is demonstrated. The Reynolds number
is the same as before, but the mixing layer has been moved
close to the critical layer. It is immediately obvious that the
earlier balance is destroyed. The counterproduction peak
in the mixed layer is much larger than before, making the
flow more stable. The wave number used is that at which
the flow is least stable for the given Reynolds number at
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FIG. 4. Energy balance: production W1� y�, solid line;
dissipation W2� y�, dot-dashed line, Re � 5772. Top:
m � 1, G1 � G2 � 0.0148. Bottom: m � 0.9, p � 0.3,
G1 � 0.0158, G2 � 0.0148. In this and all the subsequent
figures the solid vertical lines show the location of the critical
lines, whereas the region between the dotted lines is the mixed
layer.
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FIG. 5. Energy balance: production W1� y�, solid line; dis-
sipation W2� y�, dot-dashed line. Re � 5772, m � 0.9, p �
0.85, G1 � 20.0114, G2 � 0.0122.

this p. For m � 0.9, the threshold Reynolds number is
46 400. Figure 6 shows the energy balances at marginal
stability — the picture is qualitatively the same here as at
Re � 5772 for the neat fluid.

The main factor determining the stability is the produc-
tion, which is driven by the phase change caused by the
viscosity stratification. The dissipation on the other hand
depends only on the Reynolds number and does not re-
spond disproportionately to changes in viscosity. In neat
fluids, the term containing U 00� y� in (2) is always of higher
order within the critical layer. However, with the introduc-
tion of a viscosity gradient within the critical layer, the
gradients of the basic velocity profile will scale according
to the mixed layer coordinate j. An analysis in the critical
layer indicates that for q # O�Re21�3�, the term contain-
ing U 00��U 2 c� is now among the most dominant. Any
reasonable viscosity gradient of the right sign will pick up
this term, leading to vastly enhanced stability. Note the
dramatic effect in U 00 in Fig. 3.
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FIG. 6. Energy balance: production W1� y�, solid line; dis-
sipation W2� y�, dot-dashed line. Re � 46 400, m � 0.9, p �
0.85, G1 � G2 � 0.0053.
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Indeed, in the light of this discussion we can expect that
the large effect of retardation of the instability would even
increase if we make the mixing layer thinner. This is in-
deed so. Nevertheless, one cannot conclude that instability
can be retarded at will, since other disturbances, differing
from the primary mode, become unstable first, albeit at
a much higher Reynolds number than the primary mode;
when we stabilize a given mode substantially, we should
watch out for other preexisting/newly destabilized modes
which may now be the least stable.

Finally, we connect our findings to the phenomenon
of drag reduction in turbulent flows. Since the total dis-
sipation can be computed just from the knowledge of the
velocity profile at the walls, any amount of drag reduction
must be reflected by a corresponding reduction of the gra-
dient at the walls. Concurrently, the energy intake by the
fluctuations from the mean flow should reduce as well. In-
deed, the latter effect was measured in both experiments
[9] and simulations [10,11]. The question is which is the
chicken and which is the egg. In our calculation we iden-
tified that the reduction in production comes first. From
Figs. 4 and 5 which are at the same value of Re we see
that the dissipation does not change at all when the mix-
ing layer moves, but the production is strongly affected.
Of course, at steady state the velocity gradient at the wall
must adjust as shown in Fig. 6. We recognize that in a
turbulent flow there are a number of modes that interact,
but we propose that a similar mechanism operates for each
mode at its critical layer, where both elastic and viscous
effects determine the mean flow. In the present calculation
we can consider all the putative unstable modes and con-
clude that with a viscosity gradient similar to that seen in
polymeric turbulent flows the threshold Re goes up 5 times
(to 31 000). We leave the confirmation of this prediction
to future experiments.
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